• 제목/요약/키워드: technical solution

검색결과 1,068건 처리시간 0.027초

표면사이징용 전분의 점도 특성이 라이너지의 표면사이징 효과에 미치는 영향 (Influence of the Viscosity of Surface Sizing Starch Solutions on Surface Sizing Effect of Linerboard)

  • 정영빈;이학래;윤혜정;정광호;류훈
    • 펄프종이기술
    • /
    • 제44권5호
    • /
    • pp.54-62
    • /
    • 2012
  • The main role of surface sizing of linerboard is to improve surface and strength properties. Since surface sizing solution is applied on once dried web, substantial amount of drying energy is required. Saving of the drying energy associated with surface sizing can be made by increasing the solids content of the starch solution in size press. Therefore, it is highly desirable to develop low viscosity starches for surface sizing. A low viscosity oxidized starch was prepared and compared its effect of surface sizing with a conventional oxidised starch. Results showed increase in solids content of the starch solution decreased evaporation energy and drying time. Low viscosity starch penetrated deeper into paper and this improve various mechanical properties of linerboard.

A Chemometric Aided UV/Vis Spectroscopic Method for Kinetic Study of Additive Adsorption in Cellulose Fibers

  • Chal, Xin-Sheng;Zhou, Jinghong;Zhu, Hongxiang;Huang, Xiannan
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.137-140
    • /
    • 2006
  • This paper describes a technique combining chemometrics with UV spectroscopy for the determination of the concentra tions of two tissue additives (i.e., wet strength and softening agents) in a cellulose fiber containing solution. In single as ent solutions, the concentration of the additive can be measured by UV spectroscopy at the wavelength where the species having absorption. For a binary (i.e., containing two additives) solution system, the spectral characterization is very complicated. However, if aided by a chemometrical calibration technique, each additive in the binary solution can be quantified simultaneously. The present method is very rapid and simple, it can easily perform a continuous measurement in the changes in the additives' concentration after fiber addition, and therefore this becomes a valuable tool for the adsorption kinetics study of chemical additives onto the cellulose fibers. The time-dependent adsorption behaviors of the wet-strength, softening agent, and their both on fiber were also presented.

  • PDF

기능성 미립자의 표면개질방법에 의한 위생지 제조 (Making Hygiene Paper by Surface Modification Method of the Functional Particle)

  • 조준형;김연오;김원덕
    • 펄프종이기술
    • /
    • 제40권2호
    • /
    • pp.29-36
    • /
    • 2008
  • In order to give pulp surfaces anti-bacterial functionality and photo-catalytic deodorant ability, functional pulps was made using a surface modification method with Ag nano-colloidal solution and $TiO_2$ filler. Hygiene paper was made with the specially modified pulp, and anti-bacterial and deodorant tests were carried out. The Ag nano-colloidal solution was coated on the surface of the pulp using the high pressurized gas phase squirt through the spray nozzle mounted on the hybridization system. The surface modified functional pulp was hybridized with the optimum ratio of $TiO_2$(fine particle) to pulp(core particle) under the condition of $6,000{\sim}10,000$ rpm for $3{\sim}7$ minutes in the system. The anti-bacterial functionality of the hygiene paper was confirmed by the halo test in which the formation of the clear zone around the hygiene paper sample was observed. The inhibition growth test using MIC bioscreen C showed the inhibition growth effect of the bacteria as the reaction time was increased. The photo-catalytic effect measurement of the $TiO_2$ for 4 hours of the reaction showed $50{\sim}60%$ of decomposition rate, reaching over 60% for 5 hours of the reaction.

Use of Cationic PAM as a Surface Sizing Additive to Improve Paper Properties

  • Seo, Man-Seok;Lee, Hak-Lae;Youn, Hye-Jung
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.245-250
    • /
    • 2006
  • This study was focused on the use of cationic PAM (Polyacrylamide) as a surface sizing additive to improve the surface sizing properties of paper. Effects of the ionic property, viscosity and charge density of PAM on bending stiffness of surface sized papers were investigated. Use of cationic PAM as a surface sizing additive improved bending stiffness while addition of anionic PAM did not show any effect. Increase of starch holdout with the addition of cationic PAM was attributed as a prime reason of stiffness increase. Viscosity of PAM was one of the most important factors affecting surface sizing due to its influence on the interaction between cationic PAM and oxidized starch solution. Greater improvement of bending stiffness of paper was obtained when high charged PAM was used as an additive. The order of addition was found to have significant influence on the effect of additives since it influences the formation of network structure among starch, cationic PAM, and SA (styrene acrylic acid copolymer). Investigation on the penetration of starch solution was carried out with CLSM (Confocal Laser Scanning Microscopy), and it was shown that the addition of cationic PAM to oxidized starch solution made starch molecules stay on the paper surface rather than penetrating into the paper structure because of the electrostatic interaction between negatively charged fibers and positively charged cationic PAM.

  • PDF

Microalloyed 강에서 복합 탄질화물의 재용해 거동 (Dissolution Behavior of Complex Carbonitrides in a Microalloyed Steel)

  • 정재길;박준수;하양수;이영국;배진호;김기수
    • 열처리공학회지
    • /
    • 제21권6호
    • /
    • pp.287-292
    • /
    • 2008
  • Dissolution behavior of complex carbonitrides in a Nb-Ti-V microalloyed steel was quantitatively examined by electrical resistivity, transmission electron microscopy (TEM), and optical microscopy. The electrical resistivity increased with solution treatment temperature up to $1250^{\circ}C$ for a holding time of 15 min. But, an increasing rate of electrical resistivity with temperature was obviously decreased above $1150^{\circ}C$. As the solution treatment temperature increases, irregular shaped Nb-rich carbonitrides disappear and cuboidal Ti-rich carbonitrides are observed. Abnormal grain growth occurs above $1250^{\circ}C$ for a holding time of 15 min. The optimal solution treatment temperature of a Nb-Ti-V microalloyed steel was determined as $1200^{\circ}C$ for a holding time of 15 min.

Sustainable retrofit design of RC frames evaluated for different seismic demand

  • Zerbin, Matteo;Aprile, Alessandra
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1337-1353
    • /
    • 2015
  • Seismic upgrading of existing structures is a technical and social issue aimed at risk reduction. Sustainable design is one of the most important challenges in any structural project. Nowadays, many retrofit strategies are feasible and several traditional and innovative options are available to engineers. Basically, the design strategy can lead to increase structural ductility, strength, or both of them, but also stiffness regulation and supplemental damping are possible strategies to reduce seismic vulnerability. Each design solution has different technical and economical performances. In this paper, four different design solutions are presented for the retrofit of an existing RC frame with poor concrete quality and inadequate reinforcement detailing. The considered solutions are based on FRP wrapping of the existing structural elements or alternatively on new RC shear walls introduction. This paper shows the comparison among the considered design strategies in order to select the suitable solution, which reaches the compromise between the obtained safety level and costs during the life-cycle of the building. Each solution is worked out by considering three different levels of seismic demand. The structural capacity of the considered retrofit solutions is assessed with nonlinear static analysis and the seismic performance is evaluated with the capacity spectrum method.

Time-dependent analysis of cable trusses -Part I. Closed-form computational model

  • Kmet, S.;Tomko, M.
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.157-169
    • /
    • 2011
  • In this paper the time-dependent closed-form static solution of the suspended pre-stressed biconcave and biconvex cable trusses with unmovable, movable and elastic or viscoelastic yielding supports subjected to various types of vertical load is presented. Irvine's forms of the deflections and the cable equations are modified because the effects of the rheological behaviour needed to be incorporated in them. The concrete cable equations in the form of the explicit relations are derived and presented. From a solution of a vertical equilibrium equation for a loaded cable truss with rheological properties, the additional vertical deflection as a time-function is determined. The time-dependent closed-form model serves to determine the time-dependent response, i.e., horizontal components of cable forces and deflection of the cable truss due to applied loading at the investigated time considering effects of elastic deformations, creep strains, temperature changes and elastic supports. Results obtained by the present closed-form solution are compared with those obtained by FEM. The derived time-dependent closed-form computational model is used for a time-dependent simulation-based reliability assessment of cable trusses as is described in the second part of this paper.

Examination of analytical and finite element solutions regarding contact of a functionally graded layer

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.325-336
    • /
    • 2020
  • In this study, the continuous and discontinuous contact problems of functionally graded (FG) layer resting on a rigid foundation were considered. The top of the FG layer was loaded by a distributed load. It was assumed that the shear modulus and the density of the layer varied according to exponential functions along the depth whereas the the Poisson ratio remained constant. The problem first was solved analytically and the results were verified with the ones obtained from finite element (FE) solution. In analytical solution, the stress and displacement components for FG layer were obtained by the help of Fourier integral transform. Critical load expression and integral equation for continuous and discontinuous contact, respectively, using corresponding boundary conditions in each case. The finite element solution of the problem was carried out using ANSYS software program. In continuous contact case, initial separation distance and contact stresses along the contact surface between the FG layer and the rigid foundation were examined. Separation distances and contact stresses were obtained in case of discontinuous contact. The effect of material properties and loading were investigated using both analytical and FE solutions. It was shown that obtained results were compatible with each other.

Comprehensive Analysis of the Corrosion Inhibition Performance of 4-Piperonylideneaminoantipyrine for Mild Steel in HCl Solution: Concentration, Time, Temperature Effects, and Mechanistic Insights

  • Ahmed Y. I. Rubaye;Sabah M. Beden;Ahmed A. Alamiery;A. A. H. Kadhum;Waleed K. Al-Azzawi
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.20-32
    • /
    • 2024
  • Metal corrosion in acidic environments is a major issue in various industrial applications. This study evaluates the 4-piperonylideneaminoantipyrine (PPDAA) corrosion inhibition efficiency for mild steel in a hydrochloric acid (HCl) solution. The weight loss method was used to determine the corrosion inhibition efficiency at different concentrations and immersion time periods. Results revealed that the highest inhibition efficiency (94.3%) was achieved at 5 mM concentration after 5 hours of immersion time. To inspect the surface morphology of the inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl. Density functional theory (DFT) calculations were performed to investigate the molecular structure and electronic properties of the inhibitor molecule to understand the corrosion inhibition mechanism. Theoretical results showed that the inhibitor molecule can adsorb onto the mild steel surface through its nitrogen and oxygen atoms, forming a protective layer that prevents HCl corrosive attack. These findings highlight the potential of PPDAA as an effective corrosion inhibitor for mild steel in HCl solution. Moreover, combining experimental and theoretical approaches provides insights into the mechanism of corrosion inhibition, which is essential for developing effective strategies to prevent metal corrosion in acidic environments.

Effectiveness of classical rolling pendulum bearings

  • Raftoyiannis, Ioannis G.;Michaltsos, George T.
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.127-139
    • /
    • 2017
  • During the last decades, Pendulum Bearings with one or more concave sliding surfaces have been dominating bridge structures. For bridges with relative small lengths, the use of classical pendulum bearings could be a simple and cheaper solution. This work attempts to investigate the effectiveness of such a system, and especially its behavior for the case of a seismic excitation. The results obtained have shown that the classical pendulum bearings are very effective, mainly for bridges with short or intermediate length.