• Title/Summary/Keyword: technical potential

Search Result 1,019, Processing Time 0.024 seconds

Numerical Analysis on Feedback Mechanism of Supersonic Impinging Jet using LES (LES를 이용한 초음속 충돌제트의 피드백 메커니즘에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2017
  • Steam jets ejected from a rupture zone of high energy pipes may cause damage to adjacent structures. This event could lead to more serious accidents in nuclear power plants. Therefore, to prevent serious accidents, high energy pipes of nuclear power plants are designed according to the ANSI / ANS 58.2 technical standard. However, the US Nuclear Regulatory Commission (USNRC) has recently pointed out non-conservatism in existing high energy pipe fracture evaluation methods, and required the assessment of the unsteady load of the jet caused by a potential feedback mechanism as well as the impact range of steam jet, the jet impact loads and the blast wave effects at the initial breakage stage. The potential feedback mechanism refers to a phenomenon in which a vortex formed by impingement jets amplifies vortex itself and induces jet vibration in a shear layer. In this study, CFD methodology using the LES turbulence model is established and numerical analysis is carried out to evaluate the dynamic behavior of impingement jets and the potential feedback mechanism during jet impingement. Obtained results have been compared with an empirical correlation and experiment.

Resource Assessment of Tidal Current Energy Using API in Korea (API를 적용한 국내 조류에너지 잠재량 추정)

  • Jo, Chul-Hee;Lee, Kang-Hee;Cho, Bong-Kun;Hwang, Su-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • The west and south coastal regions of Korea are known to be of strong tidal current speed. With the increasing demand for renewable energies, the resource assessment has been a crucial issue which should be conducted before any detail planning and development of the potential sites for tidal current farm. Although there are several results of resource assessment of tidal current energy in Korea, the resource assessment method is not officially announced. This undefined methodology makes the results unreliable and useless. Recently new renewable energy potential definition has been announced by KIER (Korea Institute of Energy Research). This categorizes energy potential as four steps; theoretical, geographical, technical and market potentials. This paper describes the resource assessment of tidal current power in Korea based on API (Averaged Power Intercepted). The results show that the Incheon-Gyeonggi and Jeollanam-do are very promising areas for tidal current power in Korea.

Modeling of Co(II) adsorption by artificial bee colony and genetic algorithm

  • Ozturk, Nurcan;Senturk, Hasan Basri;Gundogdu, Ali;Duran, Celal
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.363-371
    • /
    • 2018
  • In this work, it was investigated the usability of artificial bee colony (ABC) and genetic algorithm (GA) in modeling adsorption of Co(II) onto drinking water treatment sludge (DWTS). DWTS, obtained as inevitable byproduct at the end of drinking water treatment stages, was used as an adsorbent without any physical or chemical pre-treatment in the adsorption experiments. Firstly, DWTS was characterized employing various analytical procedures such as elemental, FT-IR, SEM-EDS, XRD, XRF and TGA/DTA analysis. Then, adsorption experiments were carried out in a batch system and DWTS's Co(II) removal potential was modelled via ABC and GA methods considering the effects of certain experimental parameters (initial pH, contact time, initial Co(II) concentration, DWTS dosage) called as the input parameters. The accuracy of ABC and GA method was determined and these methods were applied to four different functions: quadratic, exponential, linear and power. Some statistical indices (sum square error, root mean square error, mean absolute error, average relative error, and determination coefficient) were used to evaluate the performance of these models. The ABC and GA method with quadratic forms obtained better prediction. As a result, it was shown ABC and GA can be used optimization of the regression function coefficients in modeling adsorption experiments.

Manual Application of Adhesives

  • Hellmanns, Mark;Bohm, Stefan;Dilger, Klaus
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.24-27
    • /
    • 2006
  • International standards claim the best possible reliability in industrial manufacturing processes. This is also essential for the application with manual applicators. The application of adhesives with manual applicators is one of the most frequently used application techniques. The range of application reaches from the building of prototypes in the automobile industry over the use in single or small-batch manufacturing up to applications in crafts enterprises. Conventional manual applicators for adhesives and sealants don't fulfill the demands in international standards for the best possible reliability. Only the worker is able to control the quality and the quantity of the bond. A velocity-controlled manual applicator solves these restrictions. Special sensors and micro controllers calculate the flow-rate, the velocity and the location of the manual applicator. This leads to stable and repeatable application processes which are claimed in international standards. The location of the bond can be compared with the nominal value, so that it is possible to check the quality of the bond during application. Furthermore there is the potential to document the data of the manufacturing process.

  • PDF

The Study of MRO industry development utilizing the aviation safety technical organization (항공안전기술 전문기관을 활용한 MRO 산업의 발전 연구)

  • Lee, Kang-Seok;Kim, Young-In;Chang, Kyoung-Sik;Jo, Young-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.2
    • /
    • pp.163-181
    • /
    • 2014
  • MRO(Maintenance, Repair and Overhaul) industry is growing with the increase in the global aviation market. Especially considering the Chinese aviation market, MRO industry in the Asian region has a growth potential. In the Asian region, Singapore is a country successfully developed MRO industry ahead of South Korea and its heart is the Singapore A*STAR. In this paper, made an analysis of successful cases for Singapore A*STAR and through the aviation technical organization, development of the domestic MRO industry and aviation R&D plan is proposed.

Corrosion of Copper in Anoxic Ground Water in the Presence of SRB

  • Carpen, L.;Rajala, P.;Bomberg, M.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • Copper is used in various applications in environments favoring and enabling formation of biofilms by naturally occurring microbes. Copper is also the chosen corrosion barrier for nuclear waste in Finland. The copper canisters should have lifetimes of 100,000 years. Copper is commonly considered to be resistant to corrosion in oxygen-free water. This is an important argument for using copper as a corrosion protection in the planned canisters for spent nuclear-fuel encapsulation. However, microbial biofilm formation on metal surfaces can increase corrosion in various conditions and provide conditions where corrosion would not otherwise occur. Microbes can alter pH and redox potential, excrete corrosion-inducing metabolites, directly or indirectly reduce or oxidize the corrosion products, and form biofilms that create corrosive microenvironments. Microbial metabolites are known to initiate, facilitate, or accelerate general or localized corrosion, galvanic corrosion, and intergranular corrosion, as well as enable stress-corrosion cracking. Sulfate-reducing bacteria (SRB) are present in the repository environment. Sulfide is known to be a corrosive agent for copper. Here we show results from corrosion of copper in anoxic simulated ground water in the presence of SRB enriched from the planned disposal site.

Quorum quenching for effective control of biofouling in membrane bioreactor: A comprehensive review of approaches, applications, and challenges

  • Kose-Mutlu, Borte;Ergon-Can, Tulay;Koyuncu, Ismail;Lee, Chung-Hak
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.543-558
    • /
    • 2019
  • In comparison to alternative advanced wastewater treatment technologies, the main problem associated with membrane bioreactor (MBR) technology, which has become prominent in recent years, is biofouling. Within these systems, biofouling is typically the result of a biofilm layer resulting from bacterial gathering. One biological system that can be employed to interrupt the process of bacterial gathering is called 'Quorum Quenching (QQ)'. Existing QQ applications can be classified using three main types: 1) bacterial/whole-cell applications, 2) direct enzyme applications, and 3) natural sourced compounds. The most common and widely recognized applications for membrane fouling control during MBR operation are bacterial and direct enzyme applications. The purpose of this review was to identify and assess biofilm formation mechanism and results, the suggestion of the QQ concept and its potential to control biofilm formation, and the means by which these QQ applications can be applied within the MBR and present QQ MBR studies.

The 3-[3α(2α-Hydroxy)pinane]-4,5-(pinan)-1,3-oxazolidine Synthesis, Structure and Properties

  • Bialek, Magdalena;Trzesowska, Agata;Kruszynski, Rafal
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.89-94
    • /
    • 2007
  • The new pinane derivative containing unique multifused ring system was synthesized. The crystal, molecular and electronic structure of the title compound has been determined. Both pinane ring systems have the same conformation. The five-membered oxazolidine ring exists in twisted chair conformation. The structure is expanded through O-H…O hydrogen bond to semiinfinite hydrogen-bonded chain. The bond lengths and angles in the optimised structure are similar to the experimental ones. The CH3 and CH2 groups (except this of oxazolidine ring) are negatively charged whereas the CH groups are positively charged. The largest negative potential is on the oxygen atoms. The C-N natural bond orbitals are polarised towards the nitrogen atom (ca. 61% at N) whereas the C-O bond orbitals are polarised towards the oxygen atom (ca. 67% at O). It is consistent with the charges on the nitrogen and oxygen atom of oxazolidine ring and the direction of the dipole moment vector (3.08 Debye).

Multilevel approach for the local nanobuckling analysis of CNT-based composites

  • Silvestre, N.;Faria, B.;Duarte, A.
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.269-283
    • /
    • 2012
  • In the present paper, a multilevel approach for the local nanobuckling analysis of carbon nanotube (CNT) based composite materials is proposed and described. The approach comprises four levels, all of them at nanoscale. The first level aims to propose the potential that describes the interatomic forces between carbon atoms. In the second level, molecular dynamics simulations are performed to extract the elastic properties of the CNT. The third level aims to determine the stiffness of the material that surrounds the CNT (matrix), using the annular membrane analysis. In the fourth level, finite strip analysis of the CNT elastically restrained by the matrix is performed to calculate the critical strain at which the CNT buckles locally. In order to achieve accurate results and take the CNT-matrix interaction into account, the $3^{rd}$ and $4^{th}$ steps may be repeated iteratively until convergence is achieved. The proposed multilevel approach is applied to several CNTs embedded in a cylindrical representative volume element and illustrated in detail. It shows that (i) the interaction between the CNT and the matrix should be taken into account and (ii) the buckling at nanoscale is sensitive to several types of local buckling modes.

Time-dependent analysis of cable trusses -Part II. Simulation-based reliability assessment

  • Kmet, S.;Tomko, M.;J., Brda
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.171-193
    • /
    • 2011
  • One of the possible alternatives of simulation-based time-dependent reliability assessment of pre-stressed biconcave and biconvex cable trusses, the Monte Carlo method, is applied in this paper. The influence of an excessive deflection of cable truss (caused by creep of cables and rheologic changes) on its time-dependent serviceability is investigated. Attention is given to the definition of the basic random variables and their statistical functions (basic, mutually dependent random variables such as the pre-stressing forces of the bottom and top cable, structural geometry, the Young's modulus of elasticity of the cables, and the independent variables, such as permanent load, wind, snow and thermal actions). Then, the determination of the response of the cable truss to the loading effects, and the definition of the limiting values considering serviceability of the structure are performed. The potential of the method, using direct Monte Carlo technique for simulation-based time-dependent reliability assessment as a powerful tool, is emphasized. Results obtained by the First order reliability method (FORM) are compared with those obtained by the Monte Carlo simulation technique.