• Title/Summary/Keyword: teak plantation

Search Result 7, Processing Time 0.018 seconds

Biomass and Carbon Storage Pattern in Natural and Plantation Forest Ecosystem of Chhattisgarh, India

  • Jhariya, Manoj Kumar;Yadav, Dhiraj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • We studied natural and plantation forest ecosystem of Sarguja in Chhattisgarh, India in order to understand how vegetation biomass, carbon stock and its allocation patterns vary among the sites. For this, stratified random sampling was opted to measure the different layers of vegetation. Wide floral diversity was found in the natural forest site as compared to the teak stand. Overall, 17 tree species found in natural forest comprising 8 families while in the teak stand 6 species were recorded. In understory strata 23 species were recorded (18 herbs and 5 shrubs) in natural forest whereas in teak stand 20 herb species and 3 shrubs were found. Great variation was also seen in the population dynamics of the different vegetation stratum in concerned sites. The sapling, seedling and herb density was found to be highest in natural stand while tree and shrub density was more in teak stand. Results indicated that stand biomass of the natural site was $321.19t\;ha^{-1}$ while in the teak stand it was $276.61t\;ha^{-1}$. The total biomass of tree layer in plantation site was $245.22t\;ha^{-1}$ and natural forest $241.44t\;ha^{-1}$. The sapling, seedling, shrub and forest floor biomass was found highest under natural forest as compared to the teak plantation site. Carbon stock has similar trend as that of biomass accumulation in natural forest and teak stand. Higher biomass accumulation and carbon stock were recorded in the higher girth class gradation of the population structure. Proper efforts are required to manage these diverse ecosystems to obtain higher biomass and sustainable ecological services.

Carbon Sequestration of Teak (Tectona grandis Linn. f.) Plantations in the Bago Yoma Region of Myanmar

  • Oo, Thaung Naing;Lee, Don Koo;Combalicer, Marilyn
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.602-608
    • /
    • 2007
  • Forest plantations become important strategy not merely for the financial aspect, but for carbon sequestration and ecosystem stability. Forest plantations increase the density of the forest biomass, which reduce the increase in atmospheric carbon dioxide. Biomass density is also a useful variable for comparing structural and functional attributes of forest ecosystems across a wide range of environmental conditions. In this study, carbon sequestration of teak (Tectona grandis Linn. f.) in the individual tree and plantation levels estimation was carried out Site-specific allometric equation for the estimation of teak tree biomass was developed based on the direct measurement of fifteen (15) harvested trees in the Oak-twin Township of the Bago Yoma Region, Myanmar. A regression equation of the diameter at breast height (DBH) and the aboveground biomass (carbon content) was constructed to estimate the carbon storage level of plantations, which averaged 79 ton/ha. The average carbon accumulation in the soil (up to 30 cm in depth) was estimated 38.89 ton/ha, The highest mean annual increment (MAI) of total carbon was found in the 6-yr-old teak plantation (12.10 ton/ha/yr) whereas the lowest MAI was in the 26-yr-old teak plantation (4.31 ton/ha/yr).

Economic Analysis of Growing Ginger (Zingiber officinale) Under Teak (Tectona grandis) Canopy in Southwest Nigeria

  • Oladele, Adekunle Tajudeen;Popoola, Labode
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.147-156
    • /
    • 2013
  • Multiple use forestry is capable of generating income for forest based communities through Non-Timber forest products (NTFPs) which provide food, medicine, materials for domestic use and cash income for communities adjoining forest areas in developing countries. This study evaluates the economics of producing ginger rhizomes under teak canopy in a multiple land use system during 2007 and 2008 in even aged teak plantations in Ibadan and Ife, Nigeria. Twelve $6m^2$ sample plots were randomly selected in Completely Randomized Block Design within and outside the plantation. Average ginger rhizome of (50-60 g) were planted on the slightly tilled soil. NPK 15:15:15 was applied at 180 kg/ha on a split unit dose. ANOVA, Profitability, Benefit-Cost (B/C) ratio were used to analyze data. Results showed no significant differences between sites in ginger rhizome yield, (0.089 and 0.718, ${\rho}{\leq}0.05$) in 2007 and 2008 respectively. Average yield were higher outside teak canopy in both sites and treatments, (Ibadan -40.05 g>32.9 g, Ife -67.6 g>25.2 g and Ibadan -41.3 g>31.5 g, Ife -66.8 g>25.0 g) with and without NPK respectively. NPK had no effect on yields within teak plantation, (Ibadan -31.5<32.9 g, Ife -25 g<25.2 g). Ginger rhizome production was viable financially without inorganic fertilizer during second cropping season within and outside plantation (B/C=1.02, 1.09) respectively. Ginger could be raised profitably under teak canopy, however, studies on insolation requirement of ginger under teak canopy and other tree plantations are recommended.

Soil Properties in Two Forest Sites in Cox's Bazar, Bangladesh

  • Akhtaruzzaman, Md.;Osman, K.T.;Sirajul Haque, S.M.
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.4
    • /
    • pp.280-287
    • /
    • 2015
  • Soil samples were collected from three depths (0-10 cm, 10-40 cm and 40-80 cm) of two forest sites including one plantation dominated by teak with some other minor species and another degraded natural forest in Cox's Bazar, Bangladesh to compare their soil properties. Some vegetation parameters were also studied. For this study $10{\times}10\;m$ and $2{\times}2\;m$ quadrats were used for the tree and undergrowth parameters, respectively. Soil samples were also collected from these quadrats. Between the two forest types, the highest levels of organic carbon, total nitrogen, available phosphorus, exchangeable bases and cation exchange capacity (CEC) were found in soils of the plantation. The soils were acidic in nature and exchangeable Al concentrations were low. Teak dominated forest plantation had higher soil fertility index (SFI) than the degraded natural forest site. Steps for reforestation and appropriate protection are needed to improve the situation.

Assessment of Teak (Tectona grandis Linn. f.) Provenance Tests in the Bago Yoma Region, Myanmar

  • Lwin, Ohn;Hyun, Jung-Oh;Yahya, Andi Fadly
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.686-692
    • /
    • 2010
  • This study described the general pattern of genetic variation among ten teak (Tectona grandis Linn. f.) provenances in Myanmar and determined the most suitable seed sources for the plantation program in Bago Yoma region. Seeds of ten provenances were collected to cover the whole teak natural distribution in Myanmar and planted at four trial sites in Bago Yoma region in 1998. Seven years after planting, variation was assessed for growth, morphological characteristics and their correlation with geoclimatic factors. Statistical analysis using ANOVA revealed that there were significant differences in most of the traits measured among provenances, trial sites and provenance ${\times}$ site interaction at five percent level. A positive significant correlation (p<0.01) was found among most of the traits. The regression analyses between all traits and geoclimatic factors indicated the existence of ecoclinal variation in teak. Most of the traits were negatively correlated with the latitude while a positive significant correlation was found between longitude and C/B ratio, crown-diameter, average branch angle and leaf-remain. There was no significant correlation between the mean temperature and any other traits in this study. Furthermore, growth traits and crown diameter were positively correlated with the mean annual rainfall while negative correlation was found between the geographical distance and growth traits. Results indicate that the latitudinal pattern of teak genetic variations in growth performance was attributed to the limit of mean annual rainfall. Comparative assessment showed that local provenances were generally the best and could be use as suitable seed sources for the plantation program in the Bago Yoma region.

Teak (Tectona grandis Linn. f.): A Renowned Commercial Timber Species

  • Palanisamy, K.;Hegde, Maheshwar;Yi, Jae-Seon
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.1
    • /
    • pp.1-24
    • /
    • 2009
  • Teak (Tectona grandis) is one of the most valuable timber yielding species in the world, with predominant distribution in tropical or sub-tropical countries. However, natural teak available only in few countries like India, Myanmar, Laos People's Democratic Republic and Thailand. Teak grows well in deep, well-drained alluvial soils, fairly moist, warm, tropical climate with pH ranges from 6.5-7.5. Teak is cultivated in many Asian, African and South American countries for timber production. The global teak plantations are estimated to be three million hectare with major share in India (44%) followed by Indonesia (33%). India is considered as richest genetic resources of teak with large areas of natural teak bearing forests (8.9 million ha), plantations (1.5 million ha), clonal seed orchards (1000 ha) and seed production areas (5000 ha). The studies on diversity of teak populations showed that teak is an out crossing species with major portion of diversity present within the populations. The productivity and quality of teak timber varies depending upon the site and environmental conditions. Teak wood is moderately heavy, strong and tough,straight grained, coarse textured and ring porous with specific gravity varies from 0.55 to 0.70. The sapwood is white to pale yellow in colour and clearly demarcated while heartwood is dark brown or dark golden yellow in colour. Teak is one of the most durable timbers in the world, practically, impervious to fungus and white ant attack and resistant to decay. Teak wood is used in ship and boat constructions, furnitures and aesthetic needs. Genetic improvement programmes have been undertaken in countries like Thailand, India, Malaysia and Indonesia. The programme includes provenance identification and testing, plus tree selection and clonal multiplication, establishment of seed orchards and controlled hybridization. Several aspects like phenology, reproductive biology, fruit characteristics, silvicultural practices for cultivation, pest and diseases problems, production of improved planting stock, harvesting and marketing, wood properties and future tree improvement strategy to enhance productivity have been discussed in this paper.

  • PDF

Wood Physical and Mechanical Properties of Clonal Teak (Tectona grandis) Stands Under Different Thinning and Pruning Intensity Levels Planted in Java, Indonesia

  • Gama Widya SETA;Fanny HIDAYATI;WIDIYATNO WIDIYATNO;Mohammad NA'IEM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.109-132
    • /
    • 2023
  • The objective of this study was to reveal the impact of thinning and pruning regimes on the physical and mechanical properties of clonal teak wood planted in Java. In this study, a 15-year-old clonal teak plantation was carried out and the obtained data were evaluated with analysis of variance (ANOVA). The results showed that different thinning intensities had a significant impact on the alteration of heartwood volume development (F = 25.63; p < 0.0001). Meanwhile, the impact of different thinning treatments in several physical properties depends on the pruning treatment levels [moisture content (F= 12.18, p < 0.0001); tangential shrinkage (F = 15.60, p < 0.0001); T/R ratio (F = 7.17, p < 0.0001); and volumetric shrinkage (F = 10.81, p < 0.0001)]. However, different thinning intensities had no significant impact on wood basic density alteration (F = 0.72, p = 0.486), while pruning intensities affect the differences between radial (F = 3.52, p = 0.030) and volumetric shrinkage (F = 3.13, p = 0.044). In mechanical properties, thinning intensity levels did not promote any significant differences [modulus of elasticity (F = 1.41, p = 0.248); modulus of rupture (F = 0.94, p = 0.392); compressive strength parallel to grain (F = 0.21, p = 0.813); and compressive strength perpendicular to the grain (F = 0.41, p = 0.669)]. Meanwhile, different pruning treatments and combination treatments were not significantly altered all mechanical properties. These results indicated that the thinning and pruning regimes can enhance the mechanical properties without having a serious alteration in the physical properties of clonal teak wood.