• Title/Summary/Keyword: tea catechins

Search Result 140, Processing Time 0.022 seconds

Effect of Green Tea Catechins on the Expression and Activity of MMPs and Type I Procollagen Synthesis in Human Dermal Fibroblasts (사람 섬유아세포에서 녹차 카테킨이 노화 인자인 MMP와 type 1 Procollagen 발현에 미치는 영향)

  • Shin, Hyun-Jung;Kim, Su-Nam;Kim, Jung-Ki;Lee, Byeong-Gon;Chang, Ih-Seoup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.2 s.57
    • /
    • pp.117-121
    • /
    • 2006
  • Although many studies have been performed to elucidate the molecular consequence of factors that regulate skin aging, little is known about the effect of green tea catechins except EGCG. The matrix metalloproteinase (MMP), can degrade matrix proteins and results in a collagen deficiency in photodamaged skin, are known to play an important role in photoaging. This study, investigated the effects of green tea catechins on the UVA-induced MMP-1 expression, activity of MMP-2 and synthesis of type I procollagen in human dermal fibroblasts. We examined eight catechins that naturally exist in green tea leaves and compared their efficacies among them. Most of catechins inhibited the expression of MMP-1 in dose dependent manner, and the levels were reduced, especially, 57.4 and 68.2% by treatment with $1{\mu}M$ of epigallocatechin-3-gallate (EGCG) and gallocatechin-3-gallate (GCG), respectively. Also, catechins significantly suppressed the activities of MMP-2. Catechins also induced the expression of type I procollagen, however, they acted only at the concentration below $1{\mu}M$ interestingly. Furthermore, when EGCG:GCG:ECG had the ratio of 0.5:1.5:.1.3, they presented the most effective on procollagen synthesis. Therefore, we concluded that catechins significantly inhibited MMPs and induced collagen synthesis. Taken together, all these results suggested that green tea catechins might be good natural materials act as an anti-photoaging and a skin-aging improving agent.

Chemical Composition of Green Teas According to Processing Methods and Extraction Conditions

  • Kim, Young-Kyung;Oh, Yoo-Jin;Chung, Jin-Oh;Lee, Sang-Jun;Kim, Kwang-Ok
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1212-1217
    • /
    • 2009
  • This study examined the influence of manufacturing processes and extraction conditions on the chemical compositions of green tea. Green tea samples grown in various areas (Korea, China, and Japan) and processed by 4 different methods (steaming, pan-firing, steaming and pan-firing, and heavy roasting after steaming and pan-firing) were collected for study. The chemical compositions of the green tea extracts and infusions were different according to their processing methods and extraction conditions, including catechins, caffeine, and free amino acids contents. In all samples analyzed, (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and theanine were determined as the major catechins and free amino acid, respectively. Studies of samples grown in the same area (Jeju; Korea) showed that there were significant differences in the concentrations of catechins and caffeine in extract and infusion according to the processing methods. These results indicate that processing methods influenced the chemical compositions of the green tea extracts and infusions.

Classification of Korean Green Tea Products Based on Chemical Components

  • Chun Jong Un;Choi Jeong;Lim Keun-Cheol;Kim Yong-Gul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.295-299
    • /
    • 2004
  • The prices of domestic green tea products are relatively expensive and price differences within products of the same levels of quality are various. Also, there is no basic criteria on evaluation of green tea quality. To group 43 commercial green tea products into several parts by the principal component and cluster analyses, this work was done by use of 8 chemical constituents which were analyzed by NIR system. The principal component and cluster analyses revealed 8 groups. The first group included 16 products that had lower free amino acid and theanine contents. The second group included 5 products having higher free amino acid and theanine contents, but lower ash contents. The third group included 13 products showing medium values of 8 constituents. The IV group included 4 products having higher contents of moisture, free amino acids, and theanine. The V group included 1 product showing higher moisture but lower catechins contents. The VI group included 2 products that had higher moisture and catechins contents, but lower free amino acid and theanine contents. The VII group had higher moisture and catechins contents. The VIII group had higher ash and vitamin C contents. The free amino acid contents which were the most important in flavor evaluation of green tea quality did highly positively correlate with the contents of total nitrogen $(0.956^{**}),\;theanine\;(0.981^{**}),\;and\;caffeine\;(0.793^{**})$, but negatively with the contents of ash $(-0.884^{**})$. The catechins used as for functional ingredients did correlate with contents of caffeine(+) and vitamin C(-), respectively.

Antibacterial Activities of Phenolic Components from Camellia sinensis L. on Pathogenic Microorganisms

  • Shin, Jung-Sook;Chung, Ha-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.135-140
    • /
    • 2007
  • Antibacterial activities of the major phenolic components from Camellia sinensis L. were investigated against several pathogenic microorganisms including Gram-positive strains like Staphylococcus aureus ATCC 29213 and Streptococcus pyogens 308A; and Gram-negative strains like Escherichia coli ATCC 25922, Escherichia coli 078, Pseudomonas aeruginosa 9027, and Enterobacter cloacae 1321E. The MIC values demonstrate that both (-)-epicatechin and (-)-epigallocatechin were more considerably toxic against Staphylococcus aureus ATCC 29213 than the other two catechins like (-)-epicatechingallate and (-)-epigallocatechin-3-gallate. (-)-Epicatechingallate and (-)-epigallocatechin-3-gallate were most inhibitory against Escherichia coli ATCC 25922. As a result, (-)-epicatechin showed predominant antibacterial activities among tea varieties. The contents of major polyphenolic components such as four catechins, theaflavin, and quercetin were different according to fermentation processes. The total contents of four catechins were ranged from 13.81 to 1.33%, with (-)-epigallocatechin-3-gallate being dominant among tea varieties; theaflavin was found the characteristic pigment in fully-fermented black tea.

Protective Effects of Green Tea Catechins and (-)-Epigallocatechin gallate on Reactive Oxygen Species-Induced Oxidative Stress (녹차카테킨과 에피갈로카테킨갈레이트의 산화적 스트레스에 대한 억제효과)

  • 윤여표;박종범;허문영
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.101-107
    • /
    • 2001
  • Green tea catechins (GTC) and its major component, (-)-epigallocatechin gallate (EGCG) were studied for their protective effects against reactive oxygen species (ROS)-induced oxidative stress. GTC and EGCG skewed the strong antioxidative effects on the lipid peroxidation of ethyl linolate with Fenton's reagent and free radical scavenging effect to DPPH radical generation. They also protected $H_2O$$_2$- or KO$_2$-induced cytotoxicity in CHL cells or mouse splenocytes. These results indicate that GTC and EGCG are capable of protecting the lipid peroxidation, flee radical generation and cytotoxicity induced by ROS. The mechanism of inhibition in ROS-induced cytotoxicity may be due to their antiofidative and free radical scavenging properties. Therefore, GTC and EGCG may be useful chemopreventive agents by protecting the free radical generation which are involved in cancer and aging.

  • PDF

Analysis by HPLC of Catechins, Alkaloids and Antioxidant Activities in Hadong Green Tea Leaves (HPLC를 이용한 하동 녹차의 Catechin류, Alkaloid류 분석 및 항산화능 측정)

  • Lee, Mi-Hee;Lee, Sung-Un
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.761-769
    • /
    • 2013
  • This study used HPLC to analyze the contents of catechins, alkaloids, theanine, total phenolic compounds and antioxidant activities of commercial Hadong green tea leaves(Uzen, Sezak, Jungzak, Daezak). The content of catechins, alkaloids, theanine, total phenolic compounds were lower by water extracts than by 80% ethanol-water extracts. Total catechin and alkaloid contents in Uzen(172.33 mg/g, 30.80 mg/g) by 80% ethanol extract were the highest. Theanine contents of 80% ethanol-water extracts ranged form 55.36 to 37.48 mg/g of tea leaves. Total phenloic compounds contents of green tea were higher than Uzen. Antioxidative of green tea by DPPH, FTC, TBA method were higher than that Uzen.

Development of Green Tea Beverage with Organic Tea Leaves (유기농 녹차잎을 이용한 녹차음료의 개발)

  • An, Mi-Kyoung;Ahn, Jun-Bae;Lee, Kwang-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.485-490
    • /
    • 2008
  • In this study, organic tea leaves were characterized with the aim of developing an organic beverage process. The green tea leaves grown using organic farming techniques were collected in Haenam, Korea. Catechins in green tea leaves were extracted by chloroform and ethyl acetate and these were then analyzed quantitatively and qualitatively by HPLC (high pressure liquid chromatography). The color and pH values of the green tea extracts were also measured. The catechin levels of April-harvested, May-harvested and June-harvested, semi-fermented leaves at 0.5% were 66.24, 29.19, 57.11, and 5.27 ${\mu}g/mL$, respectively. Among the detected catechins, the level of (-)-epigallocatechin gallate was the highest while that of (-)-epigallocatechin was not detected. The June-harvested leaves were selected as raw material for development of the green tea beverage, based on the levels of catechins, economic viability and yield of tea extract. As the level of extract increased, the levels of catechins of 0.1, 0.2, 0.5% also increased by 1.5, 11.78 and 41.01 times. From the results of the sensory evaluation of June-harvested leaf-extract, the sensory score of color was the highest in 0.1%, while the flavor and overall quality were the highest in 0.2%.

Maturation Effects of Don Tea on Physicochemical Components and Anti-Microbial (돈차(錢茶)의 숙성 기간이 이화학적 성분과 항균 활성에 미치는 영향)

  • Park, Yong-Seo;Ryu, Hyeun-Hee;Lee, Mi-Kyung;Kim, Hyun-Ju;Heo, Buk-Gu
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • This study was carried out to gather basic data on the restoration and extent of Don tea (a coin-shaped tea), the traditional tea of Korea. We examined the physicochemical components and anti-microbial activity of Don tea extracts at 0, 5 and 10 months. The Hunter value $L^*$, of Don tea extracts which were matured for 10 months decreased from 7.01 to 4.97 compared to that when the extracts were first manufactured. However, the $b^*$ value increased from 0.09 to 2.67. There were higher contents of inorganic matter in Don tea extracts following manufacture in the order of K (14.12 mg/100 mL), Mg (0.94 mg/100 mL), P (0.88 mg/100 mL), Ca (0.16 mg/100 mL) and Mn (0.16 mg/100 mL). Classified catechins contents were found in the order of C (19.97 mg/100 mL), EGC (9.30 mg/100 mL), ECG (9.02 mg/100 mL), GCG (8.50 mg/100 mL), GC (7.61 mg/100 mL) and CG (5.63 mg/100 mL). The longer the maturation period of the Don tea extracts, the lower the contents of inorganic matter and catechins. However, this did not apply to the total phenol contents, particularly in the phenol contents of Don tea extracts matured for 10 months which increased by 93.82 mg/l00 mL. Don tea extracts which were matured for longer periods showed higher anti-microbial activities against Bacillus subtilis and Streptococcus mutans. However, there were lower activities against Staphylococcus aureus, Escherichia coli and Salmonella enteritidis. Consequently, it was concluded that a shorter maturation period was required for the effective utilization of the inorganic matter, the catechins and the gram-negative bacteria in the Don tea extracts. However, a longer maturation period of 10 months was found to effectively utilize the total phenol compound contents and the gram-positive bacteria.

  • PDF

Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]

  • Singh, Kashmir;Kumar, Sanjay;Yadav, Sudesh Kumar;Ahuja, Paramvir Singh
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.95-101
    • /
    • 2009
  • Tea leaves are major source of catechins—antioxidant flavonoids. Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is one of the important enzymes that catalyzes the reduction of dihydroflavonols to leucoanthocyanins, a key ''late'' step in the biosynthesis of catechins. This manuscript reports characterization of DFR from tea (CsDFR) that comprised 1,413 bp full-length cDNA with ORF of 1,044 bp (115-1,158) and encoding a protein of 347 amino acids. Sequence comparison of CsDFR with earlier reported DFR sequences in a database indicated conservation of 69-87% among amino acid residues. In silico analysis revealed CsDFR to be a membrane-localized protein with a domain (between 16 and 218 amino acids) resembling the NAD-dependent epimerase/dehydratase family. The theoretical molecular weight and isoelectric point of the deduced amino sequence of CsDFR were 38.67 kDa and 6.22, respectively. Upon expression of CsDFR in E. coli, recombinant protein was found to be functional and showed specific activity of 42.85 nmol $min^{-1}$ mg $protein^{-1}$. Expression of CsDFR was maximum in younger rather than older leaves. Expression was down-regulated in response to drought stress and abscisic acid, unaffected by gibberellic acid treatment, but up-regulated in response to wounding, with concomitant modulation of catechins content. This is the first report of functionality of recombinant CsDFR and its expression in tea.

Optimal Reaction Conditions and Radical Scavenging Activities for the Bioconversion of Green Tea Using Tannase (Tannase를 이용한 녹차의 생물학적 전환의 최적 조건 마련 및 라디칼 소거능)

  • Hong, Yang-Hee;Yeon, You-Kyung;Jung, Eun-Young;Shin, Kwang-Soon;Yu, Kwang-Won;Kim, Tae-Young;Suh, Hyung-Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1501-1506
    • /
    • 2011
  • In this study, we optimized the reaction conditions for the bioconversion of green tea using tannase, and to evaluate its radical scavenging activities. Tea catechins such as (-)-epigallocatechin gallate (EGCG) or (-)-epicatechin gallate (ECG) were hydrolyzed by tannase to produce (-)-epigallocatechin (EGC) or (-)-epicatechin (EC), respectively, and a common product, gallic acid. The bioconversion of tea catechins by tannase was increased as enzyme concentration, substrate concentration and incubation time for enzyme dose. The results indicated the optimum reaction conditions for tannase were tannase 30 U/mL (enzyme concentration) on 1% green tea (substrate concentration) for 1 hr (incubation time for enzyme). Tannase enhanced the radical-scavenging properties of green tea; the 2,2-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging abilities were significantly (p<0.001) greater for the tannase-treated green tea extract compared to the untreated green tea extract. It is reported that ECG has the greatest antioxidant activity among the catechins in green tea, and the release of gallic acid is considered to be beneficial because of its significant antioxidant potency. The results of this study suggest that the tannase-treated green tea increases antioxidant activities under optimum reaction conditions.