• Title/Summary/Keyword: taurne

Search Result 2, Processing Time 0.017 seconds

The crystal and molecular structure of $\gamma$-hydroxy-.$\beta$-amino butyric acid

  • Kim, Yang-Bae
    • Archives of Pharmacal Research
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • The crystal structure or $\gamma$-hydroxy-$\betha$-aminobutyric acid was determined by MULTAN system with X-ray intensity data on a diffractometer and refined by the least-squares method to an R-value 0.034 for 711 reflections. The crystals were orthorhombic, space group $P2_{1}2_{1}2_{1}$, Z = 4, with a = 10.220, b = 8.257 and c = 6.556$\AA$. The molecule takes the zwitterionic form and skeletal conformation is trans-transform. The molecules are held together by intra-and intermolecular NH-O and OH--O hydrogen bonds.

  • PDF

Effects of Chronic Ethanol Consumption and Taurine Supplementation on Hepatic Total and Phospholipid Fatty Acid Compositions in Rats (만성적인 에탄올 섭취와 타우린보강이 흰쥐간의 총지방산 및 인지질지방산 조성에 미치는 영향)

  • Um, Young-Sook;Chung, Eung-Jung;Oh, Joo-Yeon;Park, Tae-Sun
    • Journal of Nutrition and Health
    • /
    • v.33 no.2
    • /
    • pp.124-133
    • /
    • 2000
  • This study evaluated the effects of chronic ethanol consumption and/or taurine supplementation on hepatic total, phospholipid fatty acid composition and the metabolism of rats fed one of three purified liquid diets for 8 weeks. the rats followed either the control diet (CD, ethanol-free and taurine-free diet); ethanol diet (ED, CD+ 50g ethanol/L) or ethanol-taurine diet (ETD, ED+3.75g taurne/L). Chronic ethanol consumption and/or dietary taurine supplementation were associated with altered hepatic total and phospholipid fatty acid composition. compared to the values for the control rats, ED or ETD significantly decreased the percentage of total monounsaturated fatty acids ($\Sigma$MUFA), and increased the percentage of total polyunsaturated fatty acids ($\Sigma$PUFA) of hepatic total lipids(p〈0.01). Percentages of 14:0(P〈0.01) and 16:0(p〈0.001) were sigificantly lower, and those of 18:0(p〈0.01), 20:0(p〈0.001), 20:3$\omega$6(p〈0.01) and 22:4$\omega$6(p〈0.01) in hepatic total fatty acid compositions were oserved in rats fed ETD versus those fed ED or ETD. No significant differences in hepatic total fatty acid compositions were observed in rats fed ETD versus those fed ED. Percentages of 24:0(p〈0.01), 16:1(p〈0.05), 20:1(p〈0.01), 18:2$\omega$6(p〈0.01) and 18:3$\omega$3(p〈0.05) in hepati phospholipids were significantly higher, and those of 14:0(p〈0.01), 16:0(p〈0.001), 20:3$\omega$3(p〈0.05) in hepatic phospholipids were significantly higher, and those of 14:0(p〈0.01), 16:0(p〈0.001), 20:3$\omega$3(p〈0.001), 22:6$\omega$3(p〈0.001) and $\Sigma$$\omega$3(P〈0.001) were significantly lower in rats fed ED or ETD compared to the values for the control rats. The Δ5 desaturation index(20:3$\omega$6⇒20:4$\omega$6) and elongation index (20:5$\omega$3⇒22:5$\omega$3) of hepatic phospholipid index (20:3$\omega$6⇒20:4$\omega$6) and decreased Δ4 desaturation index (22:5$\omega$3⇒22:6$\omega$3) compared to the values for the ED rats. These changes in hepatic fatty acid composition induced by chronic ethanol consumption and/or taurine supplementation might be associated with the modulations of physical properties of the hepatic cell membrane and its sensitivity to peroxidation damage.

  • PDF