• Title/Summary/Keyword: tau-p velocity analysis

Search Result 7, Processing Time 0.016 seconds

P-wave velocity analysis around BSR depth using surface and ocean bottom seismic data (탄성파 자료를 이용한 BSR 부근의 속도 분석)

  • Kim, Byoung-Yeop;Koo, Nam-Hyung;Yoo, Dong-Geun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.151-156
    • /
    • 2007
  • In December 2006, 2D surface streamer and Ocean Bottom Seismometer (OBS) data were acquired in the Ulleung basin in Korea where strong Bottom Simulating Reflectors (BSR) were shown as a result of 2D and 3D multichannel (MCS) reflection survey. The aim of this study is to provide another reliable source for estimating P wave velocity around BSR depth using OBS data in addition to velocity information from 2D surface seismic data. Four OBSs were deployed and four 20-km shot lines which pass two OBSs respectively were designed. To derive P wave velocity profile, interactive interval velocity analysis using ${\tau}$-p trajectory matching method (Kumar, 2005) was used for OBS data and semblance analysis was used for surface data. The seismic profiles cross the OBS instruments in two different directions yield recordings for four different azimuths. This raised the confidence for the results. All velocity profiles in the vicinity of BSR depth of four OBS sites show almost definite velocity changes which we could consider as upper BSR and free gas layer. Making comparison between velocity from OBS and that from 2D seismic semblance velocity analysis gives consistency in result.

  • PDF

P-wave Velocity Analysis Around the BSR Using Wide-angle Ocean-bottom Seismic Data (해저면 광각 탄성파 탐사자료를 이용한 BSR 부근의 P파 속도 분석)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.173-182
    • /
    • 2009
  • In April 2008, KIGAM carried out an ocean-bottom seismometer (OBS) survey in the central Ulleung Basin where strong bottom simulating reflectors (BSRs) were revealed from previous surveys and some gas-hydrate samples were retrieved by direct sampling. The purpose of this survey is to estimate the velocity structure near the BSR in the gas hydrate prospect area using wide-angle seismic data recorded on the ocean-bottom seismometers. Along with the OBS survey, a 2-D seismic survey was performed whereby stratigraphic and preliminary velocity information was obtained. Two methods were applied to wide-angle data for estimating P wave velocity; one is velocity analysis in the $\tau$-p domain and the other is seismic traveltime inversion. A 1-D interval velocity profile was obtained by the first method, which was refined to layered velocity structure by the latter method. A layer stripping method was adopted for modeling and inversion. All velocity profiles at each OBS site clearly show velocity reversal at BSR depths due to the presence of gas hydrates. In addition, we could confirm high velocity in the column/chimney structure.

A Study of the comparison of Inversion of Rayleigh wave Group and Phase Velocities for Regional Near-Surface 2-Dimensional Velocity Structure (천부지각 2차원 속도구조를 위한 레일리파의 군속도와 위상속도 역산의 비교 연구)

  • Lee, Bo-Ra;Jung, Hee-Ok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.51-59
    • /
    • 2006
  • The surface wave data obtained in a tidal flat located in the sw coast of the Korean Peninsula were used to analyse the shear wave velocity structure of the area. First, the phase velocity dispersion curves were obtained by the tau-p stacking method and the group velocity dispersion curves by a wavelet transform method and the Multiple Filtering Technique by Dziewonski. The phase velocity dispersion curves exhibited bigger errors than the group velocity curves. The results showed that the wavelet transform method was more effective in separating the fundamental and the 1st higher mode group velocity curves than the Multiple Filtering Technique. Combined use of the fundamental and the 1st higher mode group velocity dispersion curves in the inversion for the shear wave velocity structure gave better spatial resolution compared when the fundamental mode group velocity was used alone. This study indicates that the group velocity dispersion curves can be used in the inversion of Rayleigh waves for the shear wave velocity structure, especially effectively with the higher mode group velocity curves together.

  • PDF

Analysis and Approximation of Linear feedback control problems for the Boussinesq equations

  • 최영미;이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.6-6
    • /
    • 2003
  • In this work we consider the mathematical formulation and numerical resolution of the linear feedback control problem for Boussinesq equations. The controlled Boussinesq equations is given by $$\frac{{\partial}u}{{\partial}t}-{\nu}{\Delta}u+(u{\cdot}{\nabla}u+{\nabla}p={\beta}{\theta}g+f+F\;\;in\;(0,\;T){\times}\;{\Omega}$$, $${\nabla}{\cdot}u=0\;\;in\;(0,\;T){\times}{\Omega}$$, $$u|_{{\partial}{\Omega}=0,\;u(0,x)=\;u_0(x)$$ $$\frac{{\partial}{\theta}}{{\partial}t}-k{\Delta}{\theta}+(u{\cdot}){\theta}={\tau}+T,\;\;in(0,\;T){\times}{\Omega}$$ $${\theta}|_{{\partial}{\Omega}=0,\;\;{\theta}(0,X)={\theta}_0(X)$$, where $\Omega$ is a bounded open set in $R^{n}$, n=2 or 3 with a $C^{\infty}$ boundary ${\partial}{\Omega}$. The control is achieved by means of a linear feedback law relating the body forces to the velocity and temperature field, i.e., $$f=-{\gamma}_1(u-U),\;\;{\tau}=-{\gamma}_2({\theta}-{\Theta}}$$ where (U,$\Theta$) are target velocity and temperature. We show that the unsteady solutions to Boussinesq equations are stabilizable by internal controllers with exponential decaying property. In order to compute (approximations to) solution, semi discrete-in-time and full space-time discrete approximations are also studied. We prove that the difference between the solution of the discrete problem and the target solution decay to zero exponentially for sufficiently small time step.

  • PDF

Maximising the lateral resolution of near-surface seismic refraction methods (천부 탄성파 굴절법 자료의 수평 분해능 최대화 연구)

  • Palmer, Derecke
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 2009
  • The tau-p inversion algorithm is widely employed to generate starting models with most computer programs, which implement refraction tomography. This algorithm emphasises the vertical resolution of many layers, and as a result, it frequently fails to detect even large lateral variations in seismic velocities, such as the decreases which are indicative of shear zones. This study demonstrates the failure of the tau-p inversion algorithm to detect or define a major shear zone which is 50m or 10 stations wide. Furthermore, the majority of refraction tomography programs parameterise the seismic velocities within each layer with vertical velocity gradients. By contrast, the Generalized Reciprocal Method (GRM) inversion algorithms emphasise the lateral resolution of individual layers. This study demonstrates the successful detection and definition of the 50m wide shear zone with the GRM inversion algorithms. The existence of the shear zone is confirmed by a 2D analysis of the head wave amplitudes and by numerous closely spaced orthogonal seismic profiles carried out as part of a later 3D refraction investigation. Furthermore, an analysis of the shot record amplitudes indicates that a reversal in the seismic velocities, rather than vertical velocity gradients, occurs in the weathered layers. The major conclusion reached in this study is that while all seismic refraction operations should aim to provide as accurate depth estimates as is practical, those which emphasise the lateral resolution of individual layers generate more useful results for geotechnical and environmental applications. The advantages of the improved lateral resolution are obtained with 2D traverses in which the structural features can be recognised from the magnitudes of the variations in the seismic velocities. Furthermore, the spatial patterns obtained with 3D investigations facilitate the recognition of structural features such as faults which do not display any intrinsic variation or 'signature' in seismic velocities.

The Consideration for Optimum 3D Seismic Processing Procedures in Block II, Northern Part of South Yellow Sea Basin (대륙붕 2광구 서해분지 북부지역의 3D전산처리 최적화 방안시 고려점)

  • Ko, Seung-Won;Shin, Kook-Sun;Jung, Hyun-Young
    • The Korean Journal of Petroleum Geology
    • /
    • v.11 no.1 s.12
    • /
    • pp.9-17
    • /
    • 2005
  • In the main target area of the block II, Targe-scale faults occur below the unconformity developed around 1 km in depth. The contrast of seismic velocity around the unconformity is generally so large that the strong multiples and the radical velocity variation would deteriorate the quality of migrated section due to serious distortion. More than 15 kinds of data processing techniques have been applied to improve the image resolution for the structures farmed from this active crustal activity. The bad and noisy traces were edited on the common shot gathers in the first step to get rid of acquisition problems which could take place from unfavorable conditions such as climatic change during data acquisition. Correction of amplitude attenuation caused from spherical divergence and inelastic attenuation has been also applied. Mild F/K filter was used to attenuate coherent noise such as guided waves and side scatters. Predictive deconvolution has been applied before stacking to remove peg-leg multiples and water reverberations. The velocity analysis process was conducted at every 2 km interval to analyze migration velocity, and it was iterated to get the high fidelity image. The strum noise caused from streamer was completely removed by applying predictive deconvolution in time space and ${\tau}-P$ domain. Residual multiples caused from thin layer or water bottom were eliminated through parabolic radon transform demultiple process. The migration using curved ray Kirchhoff-style algorithm has been applied to stack data. The velocity obtained after several iteration approach for MVA (migration velocity analysis) was used instead or DMO for the migration velocity. Using various testing methods, optimum seismic processing parameter can be obtained for structural and stratigraphic interpretation in the Block II, Yellow Sea Basin.

  • PDF

Seismic study of the Ulleung Basin crust and its implications for the opening of the East Sea (탄성파 탐사를 통해 본 울릉분지의 지각특성과 동해형성에 있어서의 의미)

  • Kim, Han Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.9-26
    • /
    • 1999
  • The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.

  • PDF