• Title/Summary/Keyword: task reconstruction

Search Result 82, Processing Time 0.022 seconds

Task Reconstruction Method for Real-Time Singularity Avoidance for Robotic Manipulators : Dynamic Task Priority Based Analysis (로봇 매니플레이터의 실시간 특이점 회피를 위한 작업 재구성법: 동적 작업 우선도에 기초한 해석)

  • 김진현;최영진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.855-868
    • /
    • 2004
  • There are several types of singularities in controlling robotic manipulators: kinematic singularity, algorithmic singularity, semi-kinematic singularity, semi-algorithmic singularity, and representation singularity. The kinematic and algorithmic singularities have been investigated intensively because they are not predictable or difficult to avoid. The problem with these singularities is an unnecessary performance reduction in non-singular region and the difficulty in performance tuning. Tn this paper, we propose a method of avoiding kinematic and algorithmic singularities by applying a task reconstruction approach while maximizing the task performance by calculating singularity measures. The proposed method is implemented by removing the component approaching the singularity calculated by using singularity measure in real time. The outstanding feature of the proposed task reconstruction method (TR-method) is that it is based on a local task reconstruction as opposed to the local joint reconstruction of many other approaches. And, this method has dynamic task priority assignment feature which ensures the system stability under singular regions owing to the change of task priority. The TR-method enables us to increase the task controller gain to improve the task performance whereas this increase can destabilize the system for the conventional algorithms in real experiments. In addition, the physical meaning of tuning parameters is very straightforward. Hence, we can maximize task performance even near the singular region while simultaneously obtaining the singularity-free motion. The advantage of the proposed method is experimentally tested by using the 7-dof spatial manipulator, and the result shows that the new method improves the performance several times over the existing algorithms.

RadioCycle: Deep Dual Learning based Radio Map Estimation

  • Zheng, Yi;Zhang, Tianqian;Liao, Cunyi;Wang, Ji;Liu, Shouyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3780-3797
    • /
    • 2022
  • The estimation of radio map (RM) is a fundamental and critical task for the network planning and optimization performance of mobile communication. In this paper, a RM estimation method is proposed based on a deep dual learning structure. This method can simultaneously and accurately reconstruct the urban building map (UBM) and estimate the RM of the whole cell by only part of the measured reference signal receiving power (RSRP). Our proposed method implements UBM reconstruction task and RM estimation task by constructing a dual U-Net-based structure, which is named RadioCycle. RadioCycle jointly trains two symmetric generators of the dual structure. Further, to solve the problem of interference negative transfer in generators trained jointly for two different tasks, RadioCycle introduces a dynamic weighted averaging method to dynamically balance the learning rate of these two generators in the joint training. Eventually, the experiments demonstrate that on the UBM reconstruction task, RadioCycle achieves an F1 score of 0.950, and on the RM estimation task, RadioCycle achieves a root mean square error of 0.069. Therefore, RadioCycle can estimate both the RM and the UBM in a cell with measured RSRP for only 20% of the whole cell.

Feature Compensation Combining SNR-Dependent Feature Reconstruction and Class Histogram Equalization

  • Suh, Young-Joo;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.753-755
    • /
    • 2008
  • In this letter, we propose a new histogram equalization technique for feature compensation in speech recognition under noisy environments. The proposed approach combines a signal-to-noise-ratio-dependent feature reconstruction method and the class histogram equalization technique to effectively reduce the acoustic mismatch present in noisy speech features. Experimental results from the Aurora 2 task confirm the superiority of the proposed approach for acoustic feature compensation.

  • PDF

Additional Learning Framework for Multipurpose Image Recognition

  • Itani, Michiaki;Iyatomi, Hitoshi;Hagiwara, Masafumi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.480-483
    • /
    • 2003
  • We propose a new framework that aims at multi-purpose image recognition, a difficult task for the conventional rule-based systems. This framework is farmed based on the idea of computer-based learning algorithm. In this research, we introduce the new functions of an additional learning and a knowledge reconstruction on the Fuzzy Inference Neural Network (FINN) (1) to enable the system to accommodate new objects and enhance the accuracy as necessary. We examine the capability of the proposed framework using two examples. The first one is the capital letter recognition task from UCI machine learning repository to estimate the effectiveness of the framework itself, Even though the whole training data was not given in advance, the proposed framework operated with a small loss of accuracy by introducing functions of the additional learning and the knowledge reconstruction. The other is the scenery image recognition. We confirmed that the proposed framework could recognize images with high accuracy and accommodate new object recursively.

  • PDF

Constrained High Accuracy Stereo Reconstruction Method for Surgical Instruments Positioning

  • Wang, Chenhao;Shen, Yi;Zhang, Wenbin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2679-2691
    • /
    • 2012
  • In this paper, a high accuracy stereo reconstruction method for surgery instruments positioning is proposed. Usually, the problem of surgical instruments reconstruction is considered as a basic task in computer vision to estimate the 3-D position of each marker on a surgery instrument from three pairs of image points. However, the existing methods considered the 3-D reconstruction of the points separately thus ignore the structure information. Meanwhile, the errors from light variation, imaging noise and quantization still affect the reconstruction accuracy. This paper proposes a method which takes the structure information of surgical instruments as constraints, and reconstructs the whole markers on one surgical instrument together. Firstly, we calibrate the instruments before navigation to get the structure parameters. The structure parameters consist of markers' number, distances between each markers and a linearity sign of each instrument. Then, the structure constraints are added to stereo reconstruction. Finally, weighted filter is used to reduce the jitter. Experiments conducted on surgery navigation system showed that our method not only improve accuracy effectively but also reduce the jitter of surgical instrument greatly.

Survey on 3D Surface Reconstruction

  • Khatamian, Alireza;Arabnia, Hamid R.
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.338-357
    • /
    • 2016
  • The recent advent of increasingly affordable and powerful 3D scanning devices capable of capturing high resolution range data about real-world objects and environments has fueled research into effective 3D surface reconstruction techniques for rendering the raw point cloud data produced by many of these devices into a form that would make it usable in a variety of application domains. This paper, therefore, provides an overview of the existing literature on surface reconstruction from 3D point clouds. It explains some of the basic surface reconstruction concepts, describes the various factors used to evaluate surface reconstruction methods, highlights some commonly encountered issues in dealing with the raw 3D point cloud data and delineates the tradeoffs between data resolution/accuracy and processing speed. It also categorizes the various techniques for this task and briefly analyzes their empirical evaluation results demarcating their advantages and disadvantages. The paper concludes with a cross-comparison of methods which have been evaluated on the same benchmark data sets along with a discussion of the overall trends reported in the literature. The objective is to provide an overview of the state of the art on surface reconstruction from point cloud data in order to facilitate and inspire further research in this area.

Reconstruction of Soft Tissue Defect of Knee Joint Area Using Anterolateral Thigh Perforator Flap (전외측 대퇴부 천공지 피판을 이용한 슬관절부의 연부조직 결손의 재건)

  • Oh, Seung Il;Eun, Seok Chan;Baek, Rong Min
    • Archives of Reconstructive Microsurgery
    • /
    • v.20 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • Reconstruction of soft tissue defect of knee joint area has been remained a challenging task for plastic surgeons. The earlier the normal tissue saved and the necrotic tissue removed, the less the patients had complications and functional disability. But such defects are difficult to manage for its poor vascularity, rigid tissue distensibility, easy infectability and a relatively long healing period. The goal of flap coverage in the knee joint should not only be satisfactory wound coverage, but also acceptable appearance and minimal donor site morbidity. We have treated five cases using the anterolateral thigh perforator flaps for reconstruction successfully. In conclusion, we believe that in cases of knee joint area soft tissue defects, flaps like anterolateral thigh perforator flap should be considered as the first line of treatment.

  • PDF

3D Building Detection and Reconstruction from Aerial Images Using Perceptual Organization and Fast Graph Search

  • Woo, Dong-Min;Nguyen, Quoc-Dat
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.436-443
    • /
    • 2008
  • This paper presents a new method for building detection and reconstruction from aerial images. In our approach, we extract useful building location information from the generated disparity map to segment the interested objects and consequently reduce unnecessary line segments extracted in the low level feature extraction step. Hypothesis selection is carried out by using an undirected graph, in which close cycles represent complete rooftops hypotheses. We test the proposed method with the synthetic images generated from Avenches dataset of Ascona aerial images. The experiment result shows that the extracted 3D line segments of the reconstructed buildings have an average error of 1.69m and our method can be efficiently used for the task of building detection and reconstruction from aerial images.

3D Building Reconstruction Using a New Perceptual Grouping Technique

  • Woo, Dong-Min;Nguyen, Quoc-Dat
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • This paper presents a new method for building detection and reconstruction from aerial images. In our approach, we extract the useful building location information from the generated disparity map to obtain the segmentation of interested objects and thus reduce significantly unnecessary line segment extracted in low level feature extraction step. Hypothesis selection is carried out by using undirected graph in which close cycles represent complete rooftops hypotheses, and hypothesis are finally tested to contruct building model. We test the proposed method with synthetic images generated from Avenches dataset of Ascona aerial images. The experiment result shows that the extracted 3D line segments of the buildings can be efficiently used for the task of building detection and reconstruction from aerial images.

  • PDF

Reconstruction of Neural Circuits Using Serial Block-Face Scanning Electron Microscopy

  • Kim, Gyu Hyun;Lee, Sang-Hoon;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.100-104
    • /
    • 2016
  • Electron microscopy is currently the only available technique with a spatial resolution sufficient to identify fine neuronal processes and synaptic structures in densely packed neuropil. For large-scale volume reconstruction of neuronal connectivity, serial block-face scanning electron microscopy allows us to acquire thousands of serial images in an automated fashion and reconstruct neural circuits faster by reducing the alignment task. Here we introduce the whole reconstruction procedure of synaptic network in the rat hippocampal CA1 area and discuss technical issues to be resolved for improving image quality and segmentation. Compared to the serial section transmission electron microscopy, serial block-face scanning electron microscopy produced much reliable three-dimensional data sets and accelerated reconstruction by reducing the need of alignment and distortion adjustment. This approach will generate invaluable information on organizational features of our connectomes as well as diverse neurological disorders caused by synaptic impairments.