• 제목/요약/키워드: task matrix analysis

검색결과 74건 처리시간 0.033초

A K-means-like Algorithm for K-medoids Clustering

  • 이종석;박해상;전치혁
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.51-54
    • /
    • 2005
  • Clustering analysis is a descriptive task that seeks to identify homogeneous groups of objects based on the values of their attributes. In this paper we propose a new algorithm for K-medoids clustering which runs like the K-means algorithm. The new algorithm calculates distance matrix once and uses it for finding new medoids at every iterative step. We evaluate the proposed method using real and synthetic data and compare with the results of other algorithms. The proposed algorithm takes reduced time in computation and better performance than others.

  • PDF

케이싱 오실레이터의 조작성 해석 (Manipulability Analysis of the Casing Oscillator)

  • 남윤주;이육형;박명관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1693-1696
    • /
    • 2003
  • In this paper, input-output velocity transmission characteristics of the Casing Oscillator, which is a constructional machine with 4 degree of freedom are examined. After the Jacobian matrix is decomposed into linear part and angular part, the linear and the angular velocity transmission characteristics are analyzed and visualized in easy way even in the case of 3 dimensional task space with 4 variables. Regarding the measure of dexterity of the Casing Oscillator, the kinematic isotropic index and the manipulability measures which are respectively represented the isotropy and the volume of the manipulability ellipsoid are combined. A performance of the Casing Oscillator is evaluated by the combined manipulability measure.

  • PDF

다족 보행로봇의 동적 조작성 해석 (Force Manipulability Analysis of Multi-Legged Walking Robot)

  • 조복기;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.350-356
    • /
    • 2004
  • This paper presents a farce manipulability analysis of multi-legged walking robots, which calculates force or acceleration workspace attainable from joint torque limits of each leg. Based on the observation that the kinematic structure of the multi-legged walking robots is basically the same as that of multiple cooperating robots, we derive the proposed method of analyzing the force manipulability of walking robot. The force acting on the object in multiple cooperating robot systems is taken as reaction force from ground to each robot foot in multi-legged walking robots, which is converted to the force of the body of walking robot by the nature of the reaction force. Note that each joint torque in multiple cooperating robot systems is transformed to the workspace of force or acceleration of the object manipulated by the robots in task space through the Jacobian matrix and grasp matrix. Assuming the torque limits are given in infinite norm-sense, the resultant dynamic manipulability is derived as a polytope. The validity of proposed method is verified by several examples, and the proposed method is believed to be useful for the optimal posture planning and gait planning of walking robots.

금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구 (The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite)

  • 백영민;이상관;엄문광;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

차량 가진원 유무에 따른 실내소음의 전달경로 분석에 대한 연구 (Transfer Path Analysis of the Vehicle Interior Noise according to Excitation Existence or not)

  • 박종호;이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.365-370
    • /
    • 2011
  • Structure-bone noise is an important aspect to consider during the design and development of a vehicle. Reduction of structure-bone noise of the compartment in a vehicle is an important task in automotive engineering. Many methods which analyze transfer path of noise have been used for structure-bone noise. The existing method to measure of frequency response function of transfer path has been tested by removing a source. This Paper presents an experimental analysis about Transfer Path Analysis of the vehicle interior noise according to Excitation or not. To identify these points of difference, experiment were conducted through an experimental test using simulation vehicle.

  • PDF

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

서울 서남권 돔 야구장의 Snapping 검토에 관한 연구 (A study of the Snapping investigations of Seoul Southwest Baseball Dome)

  • 김승덕;김남석
    • 한국공간구조학회논문집
    • /
    • 제10권4호
    • /
    • pp.133-140
    • /
    • 2010
  • 본 논문은 서남권 돔 야구장의 불안정 거동을 파악하고자 한다. 해석 대상 구조물의 설계하중과 이들의 조합 하중에 의한 하중모드에 대하여 구조물의 비선형 Snapping 현상을 조사하며, 초기 불완전성은 접선강성행렬의 고유치해석을 통해 좌굴 모드를 얻고 이를 비선형해석에 이용한다. 단 부재좌굴 또는 국부좌굴 등은 본 연구과제의 연구범위에 고려치 않으며, 전체좌굴 현상에 한정한다.

  • PDF

햅틱 볼륨 렌더링을 위한 효과적인 역행렬 계산법 (Effective Inverse Matrix Transformation Method for Haptic Volume Rendering)

  • 김남오;민완기;정원태;김영동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.183-186
    • /
    • 2007
  • Realistic deformation of computer simulated anatomical structures is computationally intensive. As a result, simple methodologies not based in continuum mechanics have been employed for achieving real time deformation of virtual reality. Since the graphical interpolations and simple spring models commonly used in these simulations are not based on the biomechanical properties of tissue structures, these "quick and dirty"methods typically do not accurately represent the complex deformations and force-feedback interactions that can take place during surgery. Finite Element(FE) analysis is widely regarded as the most appropriate alternative to these methods. However, because of the highly computational nature of the FE method, its direct application to real time force feedback and visualization of tissue deformation has not been practical for most simulations. If the mathematics are optimized through pre-processing to yield only the information essential to the simulation task run-time computation requirements can be drastically reduced. To apply the FEM, We examined a various in verse matrix method and a deformed material model is produced and then the graphic deformation with this model is able to force. As our simulation program is reduced by the real-time calculation and simplification because the purpose of this system is to transact in the real time.

  • PDF

Analysis of quasi-brittle materials at mesoscopic level using homogenization model

  • Borges, Dannilo C;Pituba, Jose J C
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.221-240
    • /
    • 2017
  • The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative processes which occur in materials like concrete, as instance. Many homogenization-based approaches have been proposed to deal with heterogeneous materials in the last years. In this context, a computational homogenization modeling for concrete is presented in this work using the concept of Representative Volume Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and nonsymmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic characteristics of the material using simple constitutive models at mesoscopic level.

화자인식을 위한 주파수 워핑 기반 특징 및 주파수-시간 특징 평가 (Evaluation of Frequency Warping Based Features and Spectro-Temporal Features for Speaker Recognition)

  • 최영호;반성민;김경화;김형순
    • 말소리와 음성과학
    • /
    • 제7권1호
    • /
    • pp.3-10
    • /
    • 2015
  • In this paper, different frequency scales in cepstral feature extraction are evaluated for the text-independent speaker recognition. To this end, mel-frequency cepstral coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and bilinear warped frequency cepstral coefficients (BWFCCs) are applied to the speaker recognition experiment. In addition, the spectro-temporal features extracted by the cepstral-time matrix (CTM) are examined as an alternative to the delta and delta-delta features. Experiments on the NIST speaker recognition evaluation (SRE) 2004 task are carried out using the Gaussian mixture model-universal background model (GMM-UBM) method and the joint factor analysis (JFA) method, both based on the ALIZE 3.0 toolkit. Experimental results using both the methods show that BWFCC with appropriate warping factor yields better performance than MFCC and LFCC. It is also shown that the feature set including the spectro-temporal information based on the CTM outperforms the conventional feature set including the delta and delta-delta features.