• Title/Summary/Keyword: target tracking algorithm

Search Result 521, Processing Time 0.026 seconds

Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

  • Mansouri, Majdi;Khoukhi, Lyes;Nounou, Hazem;Nounou, Mohamed
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while the malicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.

Intelligent Tracking Algorithm for Maneuvering Target (지능형 추적 알고리즘)

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.499-501
    • /
    • 2005
  • When the target maneuver occurs, the estimate of the standard Kalman filter is biased and its performance may be seriously degraded. To solve this problem, this paper proposes a new intelligent estimation algorithm for a maneuvering target. This algorithm is to estimate the unknown target maneuver by a fuzzy system using the relation between the filter residual and its variation. The detected acceleration input is regarded as an additive process noise. To optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. And then, the modified filter is corrected by the new update equation method using the fuzzy system. The tracking performance of the proposed method is compared with those of an interacting multiple model (IMM).

  • PDF

The study on target tracking filter using interacting multiple model for tracking maneuvering target (기동표적 추적을 위한 상호작용다수모델 추적필터에 관한 연구)

  • Kim, Seung-Woo
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.137-144
    • /
    • 2007
  • Fire Control System(FCS) errors can be classified as hardware errors and software errors, and one of the software errors is from target tracking filter which estimates target's location, velocity, acceleration, and so on. It affects function of ballistic calculation equipment significantly. For gun to form predicted hitting point accurately and enhance hitting rate, we need status information of target's future location. Target tracking filter algorithms consist of Single Singer Model, Fixed Gain filter algorithm, IMM, PBIMM and so on. This paper will design IMM tracking filer, which is going to be! applied to domestic warship. Target tracking filter using CV model, Song model and CRT model for IMM tracking filter is made, and tracking ability is analyzed through Monte-Carlo simulation.

  • PDF

External Noise Analysis Algorithm based on FCM Clustering for Nonlinear Maneuvering Target (FCM 클러스터링 기반 비선형 기동표적의 외란분석 알고리즘)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2346-2351
    • /
    • 2011
  • This paper presents the intelligent external noise analysis method for nonlinear maneuvering target. After recognizing maneuvering pattern of the target by the proposed method, we track the state of the target. The external noise can be divided into mere noise and acceleration using only the measurement. divided noise passes through the filtering step and acceleration is punched into dynamic model to compensate expected states. The acceleration is the most deterministic factor to the maneuvering. By dividing, approximating, and compensating the acceleration, we can reduce the tracking error effectively. We use the fuzzy c-means (FCM) clustering as the method to divide external noise. FCM can separate the acceleration from the noise without criteria. It makes the criteria with the data made by measurement at every sampling time. So it can show the adaptive tracking result. The proposed method proceeds the tracking target simultaneously with the learning process. Thus it can apply to the online system. The proposed method shows the remarkable tracking result on the linear and nonlinear maneuvering. Finally, some examples are provided to show the feasibility of the proposed algorithm.

Intelligent Kalman Filter for Tracking an Anti-Ship Missile

  • Lee, Bum-Jik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.563-566
    • /
    • 2004
  • An intelligent Kalman filter (IKF) is proposed for tracking an incoming anti-ship missile. In the proposed IKF, the unknown target acceleration is regarded as an additive process noise. When the target maneuver is occurred, the residual of the Kalman filter increases in proportion to its magnitude. From this fact, the overall process noise variance can be approximated from the filter residual and its variation at every sampling time. A fuzzy system is utilized to approximate this valiance, and the genetic algorithm (GA) is applied to optimize the fuzzy system. In computer simulations, the tracking performance of the proposed IKF is compared with those of conventional maneuvering target tracking methods.

  • PDF

Coordinates Tracking Algorithm Design (표적 좌표지향 알고리즘 설계)

  • 박주광
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.62-76
    • /
    • 2002
  • This paper describes the design of a Coordinates Tracking algorithm for EOTS and its error analysis. EOTS stabilizes the image sensors such as FLIR, CCD TV camera, LRF/LD, and so on, tracks targets automatically, and provides navigation capability for vehicles. The Coordinates Tracking algorithm calculates the azimuth and the elevation angle of EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which is generated by a Radar or an operator. In the error analysis in this paper, the unexpected behaviors of EOTS that is due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. This algorithm is verified and the error analysis is confirmed through simulations. The application of this algorithm to EOTS will improve the operational capability by reducing the time which is required to find the target and support especially the flight in a night time flight and the poor weather condition.

The development of a visual tracking algorithm for the stable grasping of a moving object (움직이는 물체의 안정한 파지를 위한 시각추적 알고리즘 개발)

  • Cha, In-Hyuk;Sun, Yeong-Gab;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.187-193
    • /
    • 1998
  • This paper proposes an advanced visual tracking algorithm for the stable grasping of a moving target(2D). This algorithm is programmed to find grasping points of an unknown polygonal object and execute visual tracking. The Kalman Filter(KF) algorithm based on the SVD(Singular Value Decomposition) is applied to the visual tracking system for the tracking of a moving object. The KF based on the SVD improves the accuracy of the tracking and the robustness in the estimation of state variables and noise statistics. In addition, it does not have the numerical unstability problem that can occur in the visual tracking system based on Kalman filter. In the grasping system, a parameterized family is constructcd, and through the family, the grasping system finds the stable grasping points of an unknown object through the geometric properties of the parameterized family. In the previous studies, many researchers have been studied on only 'How to track a moving target'. This paper concern not only on 'how to track' but also 'how to grasp' and apply the grasping theory to a visual tracking system.

  • PDF

Centroids Shift Tracking Algorithm Considering Background Colors (배경색을 고려한 중심 이동 추적 알고리즘)

  • Choi, Eun-Cheol;Jang, Jun-Yeong;Kang, Moon-Gi
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.813-814
    • /
    • 2008
  • In this paper, we propose a new tracking algorithm which uses weighted sum of color bin's centroids to find the main centroid of the target. The weights are determined by the proportion of colors of the target and by the colors of background. That is, A color which has high occupation in forming the target is highly weighted and a color which has low occupation is lowly weighted. Moreover, the proposed algorithm prevent track failure by lowering the weight of the colors which forms the background. Therefore, the proposed algorithm performs stable tracking inspite of occlusion and existence of confusing backgrounds.

  • PDF

Scalable Re-detection for Correlation Filter in Visual Tracking

  • Park, Kayoung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.57-64
    • /
    • 2020
  • In this paper, we propose an scalable re-detection for correlation filter in visual tracking. In real world, there are lots of target disappearances and reappearances during tracking, thus failure detection and re-detection methods are needed. One of the important point for re-detection is that a searching area must be large enough to find the missing target. For robust visual tracking, we adopt kernelized correlation filter as a baseline. Correlation filters have been extensively studied for visual object tracking in recent years. However conventional correlation filters detect the target in the same size area with the trained filter which is only 2 to 3 times larger than the target. When the target is disappeared for a long time, we need to search a wide area to re-detect the target. Proposed algorithm can search the target in a scalable area, hence the searching area is expanded by 2% in every frame from the target loss. Four datasets are used for experiments and both qualitative and quantitative results are shown in this paper. Our algorithm succeed the target re-detection in challenging datasets while conventional correlation filter fails.

Visual Tracking Algorithm Using the Active Bar Models (능동 보모델을 이용한 영상추적 알고리즘)

  • 이진우;이재웅;박광일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1220-1228
    • /
    • 1995
  • In this paper, we consider the problems of tracking an object in a real image. In evaluating these problems, we explore a new technique based on an active contour model commonly called a snake model, and propose the active bar models to represent target. Using this model, we simplified the target welection problems, reduced the search space of energy surface, and obtained the better performances than those of snake model. This approach improves the numerical stability and the tendency for points to bunch up and speed up the computational efficiency. Representing the object by active bar, we can easily obtain the zeroth, the first, and the second moment and it facilitates the target tracking. Finally, we present the good result for the visual tracking problem.