• Title/Summary/Keyword: target precision

Search Result 543, Processing Time 0.026 seconds

A study of estimating the hit probability and confidence level considering the characteristic of Precision Guided Missile (정밀유도무기 특성을 고려한 명중률 및 신뢰수준 산정방안)

  • Seo, Bo-Gil;Hong, Seok-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.193-197
    • /
    • 2016
  • The performance of Precision Guided Missiles is estimated by using hit probability only, which is calculated by hits against total amounts of fires in current domestic live-fire tests. It has a limitation in judging the performance of all produced Precision Guided Missiles by using the calculated hit probability according to the result of live-fire test, because the overall characteristics of the produced Precision Guided Missiles are not considered. In other words, a method is needed to estimate the confidence level which is more reliable than simply calculated hit probability according to the result of live-fire test for guaranteeing the hit probability of Precision Guided Missiles by certain level, which is already being operated or produced. This paper introduces a method to estimate the confidence level of Precision Guided Missiles by minimum live-fire tests using Hypergeometric distribution and Bayes' rule suitable for the characteristics of Precision Guided Missiles, which are small production, high costs and unable to check whether the missile hits the target or not before the live-fire tests. Also, this paper suggests a reasonable confidence level for showing the performance of the Precision Guided Missiles using the results of live-fire tests and domestic and foreign literature, when the result of live-fire tests will be decided.

Development of Optical System for ARGO-M

  • Nah, Jakyoung;Jang, Jung-Guen;Jang, Bi-Ho;Han, In-Woo;Han, Jeong-Yeol;Park, Kwijong;Lim, Hyung-Chul;Yu, Sung-Yeol;Park, Eunseo;Seo, Yoon-Kyung;Moon, Il-Kwon;Choi, Byung-Kyu;Na, Eunjoo;Nam, Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.

A Study of Acoustic Noise Analysis and Reduction Method for Driving CD-ROM (CD-ROM 구동 시 발생소음 분석 및 저감 방안에 관한 연구)

  • 이재승;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.904-907
    • /
    • 2002
  • Optical disk drive device is improved in rotating speed for faster data reading. In the case of CD-ROM, rotating speed is over 10000 rpm in the practical use. As a result of high rotating speed, unexpected effects as like increasing disk fluctuation and acoustic noise are raised by the air friction on the rotating disk and the eccentricity of rotating parts. The overall acoustic noise of running CD-ROM could be classified into two different characterized noise. The first is the structural-borne noise which is generated from vibrating solid body. By the reason, the signal of structural borne noise has very similar to the signal of surface vibrating one. It has dense noise energy at specific frequency region. The other is the air-borne noise which is generated from turbulence or vortex caused by friction between disk and air. The signal of air-borne noise has no dominant peak point at acoustic pressure-frequency domain. The noise energy is widely distributed while comparatively high and large frequency region. The structural-borne noise could be reduced by reducing vibration of structure and in addition it's target reducing frequency is narrow. However the air-borne noise reduction is effectively needed of enclosing method for the noise source located near the disk surface because it is difficult to define target frequency point. In this study, the acoustic noise at driving CD-ROM is classified by the sides of it's character and tried to reduce the overall acoustic noise.

  • PDF

A Study on Dynamic Map Data Provision System for Automated Vehicle (자율주행을 위한 동적지도정보 제공에 관한 연구)

  • Yang, Inchul;Jeon, Woo Hoon;Lee, Hyang Mi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.208-218
    • /
    • 2017
  • This study aims to develop the Vehicle Local Dynamic Map (V-LDM) and demonstrate its performance for providing dynamic map data efficiently to the vehicle control module. Firstly, the concept of the in-vehicle LDM has been established and then the system has been carefully designed according to the international standards. The high-precision digital map embedded in LDM has been designed to incorporate the lane-level information of road network, and the Dynamic Map protocol (DM protocol) which is a message protocol including the road data with dynamic traffic event data has been defined. The performance test of the proposed system has been conducted in the uninterrupted road section of Kyungbu expressway, showing that both of the data size and the elapsed time to finish the process are almost linearly proportional to the length of target road. Finally, it is recommended that the length of target road for DM protocol be less than 250m.

Method of Master Receiver Selection Using DOP for Time Synchronization in TDOA-Based Localization (TDOA 기반 위치탐지를 위한 DOP을 이용한 시각동기화 주수신기 선택 기법)

  • Kim, Sanhae;Song, Kyuha;Kwak, Hyungyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1069-1080
    • /
    • 2016
  • TDOA(Time Difference Of Arrival)-based localization system such as the passive surveillance system performs the time synchronization between the receivers after separated installing multiple receivers to set the same clock for all receivers. And it estimates 2D(or 3D) location of the target by solving intersection of the multiple hyperbola(or hyperboloid) using TDOA. To perform time synchronization, one receiver must be set to the master, and it provide the reference data to compensate the clock of the rest of the slaves. The positioning accuracy of TDOA-based localization system is changed in accordance with the master that is selected among multiple receivers. So, the optimum receiver which is selected among multiple receivers must be set to master to get best performance in the considered deployment of receivers. In this paper, we propose a selection scheme of master receiver for time synchronization using DOP(Dilution Of Precision) which is based on location of the target and the multiple receivers. The proposed scheme has low complexity and short processing time, and it is easy to automate in the TDOA-based localization systems.

Development of a Wheel Slip Control System for Vehicle Cornering Stability (차량 선회 안정성을 위한 휠 슬립 제어시스템 개발)

  • Hong, Dae-Gun;Huh, Kun-Soo;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

High Resolution Forward-Looking Collision Avoidance Automotive Radar Using Stepped-Frequency Pulsed-Doppler(SFPD) Technique (계단 주파수 변조된 펄스 도플러 기법을 이용한 고해상도 전방 충돌 회피용 차량 레이다 성능 분석)

  • Woo, Sung-Chul;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.784-790
    • /
    • 2009
  • A forward-looking automotive radar typically utilizes the frequency modulated continuous wave(FMCW) or pulsed-Doppler waveform for the Information acquisition of the target range and velocity. In order to obtain the high resolution target information, however, a narrow pulse width and wide bandwidth are inherently required, thus resulting in high peak power and high speed digital converter processing. In this paper, a stepped-frequency pulsed-Doppler(SFPD) waveform algorithm is proposed for high resolution forward looking automotive radar application. The performance of the proposed SFPD waveform technique is analyzed and compared with the conventional FMCW and PD method. Since this technique can be used for the high resolution target imaging with arbitrary range and Doppler resolution, it is expected to be useful In automotive radar target classification for the precision collision avoidance applications in the future.

Simulation method of ground motion matching for multiple targets and effects of fitting parameter variation on the distribution of PGD

  • Wang, Shaoqing;Yu, Ruifang;Li, Xiaojun;Lv, Hongshan
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.563-573
    • /
    • 2019
  • When generating spectrum-compatible artificial ground motion in engineering practices, the effect of the variation in fitting parameters on the distribution of the peak ground displacement (PGD) has not yet drawn enough attention. In this study, a method for simulating ground motion matching for multiple targets is developed. In this method, a frequency-dependent amplitude envelope function with statistical parameters is introduced to simulate the nonstationarity of the frequency in earthquake ground motion. Then, several groups of time-history acceleration with different temporal and spectral nonstationarities were generated to analyze the effect of nonstationary parameter variations on the distribution of PGD. The following conclusions are drawn from the results: (1) In the simulation of spectrum-compatible artificial ground motion, if the acceleration time-history is generated with random initial phases, the corresponding PGD distribution is quite discrete and an uncertain number of PGD values lower than the limit value are observed. Nevertheless, the mean values of PGD always meet the requirement in every group. (2) If the nonstationary frequencies of the ground motion are taken into account when fitting the target spectrum, the corresponding PGD values will increase. A correlation analysis shows that the change in the mean and the dispersion values, from before the frequencies are controlled to after, correlates with the modal parameters of the predominant frequencies. (3) Extending the maximum period of the target spectrum will increase the corresponding PGD value and, simultaneously, decrease the PGD dispersion. Finally, in order to control the PGD effectively, the ground motion simulation method suggested in this study was revised to target a specified PGD. This novel method can generate ground motion that satisfies not only the required precision of the target spectrum, peak ground acceleration (PGA), and nonstationarity characteristics of the ground motion but also meets the required limit of the PGD, improving engineering practices.

Observation of Gene Edition by the Transient Expression of CRISPR-Cas9 System During the Development of Tomato Cotyledon (Agrobacterium을 이용한 토마토 떡잎에서 CRISPR-Cas9 시스템의 임시발현 시 토마토 떡잎 발달 단계에 따른 유전자교정 효율 변화)

  • Kim, Euyeon;Yang, So Hee;Park, Hyosun;Koo, Yeonjong
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.186-193
    • /
    • 2021
  • BACKGROUND: Before generating transgenic plant using the CRISPR-Cas9 system, the efficiency test of sgRNAs is recommended to reduce the time and effort for plant transformation and regeneration process. The efficiency of the sgRNA can be measured through the transient expression of sgRNA and Cas9 gene in tomato cotyledon; however, we found that the calculated efficiency showed a large variation. It is necessary to increase the precision of the experiment to obtain reliable sgRNA efficiency data from transient expression. METHODS AND RESULTS: The cotyledon of 11th, 15th, 19th, and 23rd-day-old tomato (Solanum lycopersicum cv. Micro-Tom) were used for expressing CRISPR-Cas9 transiently. The agrobacterium harboring sgRNA for targeting ALS2 gene of tomato was injected through the stomata of leaf adaxial side and the genomic DNA was extracted in 5 days after injection. The target gene edition was identified by amplifying DNA fragment of target region and analyzing with Illumina sequencing method. The target gene editing efficiency was calculated by counting base deletion and insertion events from total target sequence read. CONCLUSION: The CRISPR-Cas9 editing efficiency varied with tomato cotyledon age. The highest efficiency was observed at the 19-day-old cotyledons. Both the median and mean were the highest at this stage and the sample variability was also minimized. We found that the transgene of CRISPR-Cas9 system was strongly correlated with plant leaf development and suggested the optimum cotyledon leaf age for Agrobacterium-mediated transfection in tomato.

Relationship of Follow-through Movements to Target Accuracy in Compound Archers (컴파운드 양궁의 팔로우 스루 동작과 사격 정확도의 상관관계)

  • Junkyung Song;Kitae Kim
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.34-44
    • /
    • 2024
  • Objective: This study aimed to investigate how the movements occurring during the follow-through phase after releasing an arrow among elite compound archers, are associated with the arrow impact points on the target. Method: Nine elite archers performed consecutive compound archery shooting under conditions identical to actual competitions using their own bows and equipment. Motion capture system and force platform were utilized to record the changes in joint positions and center of pressure, respectively. Principal component analysis was employed to identify the patterns in which multidimensional joint positions and COP changes were organized with horizontal and vertical coordinates of arrow impact points. Subsequently, correlation analysis quantified the relationship between individual variables and the coordinates of arrow impacts on the target. Results: We found a common organizational pattern in which the two axes of the impact point coordinates were grouped into the first two principal components. The movements of the upper and lower limbs following release exhibited opposite patterns in the anterior-posterior axis, with significant correlations observed between the arrow impact points of the horizontal axis and the left shoulder, right elbow, left hip, and both knees. Additionally, the lateral movements induced by the reaction force upon arrow release showed significant associations with the vertical coordinates of the impact points. Particularly, the correlations between the movements of the left shoulder and elbow, as well as the bilateral hip and right knee, were consistently observed among all participants. Conclusion: These findings implied that the post-release movements could significantly influence the trajectory and impact points of the arrows in compound archery. We suggest that a consistent and controlled movement during the follow-through phase may be more beneficial for optimizing shooting accuracy and precision rather than minimizing movements.