• Title/Summary/Keyword: target level of noise

Search Result 127, Processing Time 0.029 seconds

Prediction of the Noise Levels for a Plant (공장 소음도 예측)

  • 윤세철;김태구;오종민
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.88-95
    • /
    • 2000
  • The level of noise produced by machinery and its arrangement insides a factory is indicated to be a maximum of 96.1 dB(A). The maximum level of noise from a commoner's house outside the factory is shown to be 62.9 dB(A), which exceeds 60 dB(A), the permitted limit of noise level in a time period of day. us study has predicted the level of noise reduction according to a step by step prevention plan by considering the characteristics of the causes of noise, the permitted limit of noise levels, problems and economical efficiency attendant upon the noise prevention measures. Establishing target levels of noise each of the three steps of the noise prevention plan. The predicted level of noise at the place of a commoner's house in accordance with the first step is 50.0 - 59.0 dB(A), and can satisfy the permitted limit of noise in a time period of the day. In taking prevention measures for the second step, the noise level is 50.7 - 53.6 dB(A) which is less than 55 dB(A) in a time period of the evening, the permitted limit of noise in a time period of night., and it can meet 47.4 - 50.3 dB(A) in the third step.

  • PDF

Calculation of transmission loss design values of a high speed train wall by acoustic analysis of exterior sound field (외부음장해석에 의한 고속전철 벽면에서의 투과손실 목표치 계산)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.249-256
    • /
    • 1998
  • Design target values of transmission loss in a high-speed train wall are suggested by calculating the difference between interior and exterior noise levels of it. Exterior noise level distribution on the boundary of train wall is calculated by Sysnoise, with sound source input prepared by experiments. Two kinds of exterior sound sources are considered, the rolling noise of train wheels on the rail and the aerodynamic noise from the pantograph. Interior noise level is provided by high-speed design target. Transmission loss characteristics according to the frequency band are examined.

  • PDF

Sound Quality Improvement of Electric Parking Brake System (EPB(Electric Parking Brake) 작동음질 개선에 관한 연구)

  • Park, Dong-Chul;Hong, Seok-Kwan;Jo, Ki-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.461-466
    • /
    • 2012
  • Customers want to have more convenient and comfortable vehicle. Motor-on-caliper EPB(Electrical Parking Brake) System is one of the new systems for customer's convenience. It is applied for Midsize vehicle for reducing weight/price compared to cable puller type EPB. In this paper we studied sound quality improvement of motor-on-caliper EPB system. We developed the sound quality index and suggested the interior sound quality target value. To meet the target value cascading target was also suggested. EPB motor vibration level & sound radiation level, vibro-acoustic transfer function level from EPB to interior was defined. To find out effective way of sound quality improvement and find cascading target, TPA(Transfer Path Analysis) was carried out.

  • PDF

SIMM Method Based on Acceleration Extraction for Nonlinear Maneuvering Target Tracking

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.255-263
    • /
    • 2012
  • This paper presents the smart interacting multiple model (SIMM) using the concept of predicted point and maximum noise level. Maximum noise level means the largest value of the mere noises. We utilize the positional difference between measured point and predicted point as acceleration. Comparing this acceleration with the maximum noise level, we extract the acceleration to recognize the characteristics of the target. To estimate the acceleration, we propose an optional algorithm utilizing the proposed method and the Kalman filter (KF) selectively. Also, for increasing the effect of estimation, the weight given at each sub-filter of the interacting multiple model (IMM) structure is varying according to the rate of noise scale. All the procedures of the proposed algorithm can be implemented by an on-line system. Finally, an example is provided to show the effectiveness of the proposed algorithm.

Target motion analysis algorithm using an acoustic propagation model in the ocean environment of South Korea (한국 해양환경에서 음파전달모델을 이용한 표적기동분석 알고리즘)

  • Seo, Ki Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.387-395
    • /
    • 2019
  • TMA (Target Motion Analysis) in passive sonar is generally conducted with the bearing only or the bearing frequency. In order to conduct TMA fast and accurately, it is essential to estimate a initial target maneuver precisely. The accuracy of TMA can be improved by using SNR (Signal to Noise Ratio) information and acoustic propagation model additionally. This method assumes that the radiated noise level of the target is known, but the accuracy of TMA can be degraded due to a mismatch between the assumed radiated noise level and the actual radiated noise level. In this paper, TMA with the acoustic propagation model, bearing measurements, and SNR information is conducted in the ocean environment of South Korea (East Sea/ Yellow Sea/ South Sea). And the performance analysis of TMA for the mismatch in the radiated noise is presented.

Own-ship noise cancelling method for towed line array sonars using a beam-formed reference signal (기준 빔 신호를 이용한 예인선배열 소나의 자함 소음 제거 기법)

  • Lee, Dan-Bi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.559-567
    • /
    • 2020
  • This paper proposes a noise cancelling algorithm to remove own-ship noise for a towed array sonar. Extra beamforming is performed using partial channels of the acoustic array to get a reference beam signal robust to the noise bearing. Frequency domain Adaptive Noise Cancelling (ANC) is applied based on Normalized Least Mean Square (NLMS) algorithm using the reference beam. The bearing of own-ship noise is estimated from the coherence between the reference beam and input beam signals. Own-ship noise level is calculated using a beampattern of the noise with estimated steering angle, which prevents loss of a target signal by determining whether to update a filter so that removed signal level does not exceed the estimated noise level. Simulation results show the proposed algorithm maintains its performance when the own-ship gets out off its bearing 40 % more than the conventional algorithm's limit and detects the target even when the frequency of the target signal is same with the frequency of the own-ship signal.

Study of TPA for cascading NVH target of electric parking brake (전자식 주차 브레이크 작동소음 개발 목표 설정을 위한 전달경로분석법의 적합성 연구)

  • Jung, Hyun Bum;Lee, Jae Yong;Han, Min Gyu;Jeon, Namil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.94-98
    • /
    • 2013
  • Transfer Path Analysis (TPA) is commonly used, by car makers and parts suppliers, analysis process to root the cause of NVH problems. In general, TPA is an analyzing technique to find the contributing factors of noise/vibration problems, and their transfer path in vehicle. However, not only TPA is used to analyze the source of NVH problems but also is used to predict NVH performance prior to the proto vehicle, or to set the development target for next new vehicle. Automotive parts manufacturing companies have to set NVH performance target when developing new systems just as car makers have NVH target set for new vehicle. Nevertheless, most of components are currently being developed based on subjective evaluation without an objective target. To judge the suitability of using TPA to set NVH target of electric parking brake, this research analyzed the transfer path by setting them in two points of view; Chassis Module and Electric Parking Brake, and comparing the measured value and calculated value. From this result, NVH target of electric parking brake will be approached in level of vehicle, system and component.

  • PDF

The auditory thresholds and fish behaviors to the underwater sounds for luring of target secies at the set-net in the coast of Cheju(II) -Critical ratios of the yellow tail(Seriola quinqueradiata)- (연안정치망 주요대상어종의 청각역치와 유집방음에 대한 행동반응(II) -방어(Seriola quinqueradiata)의 임계비)

  • 안장영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.19-24
    • /
    • 1999
  • This paper is second part on the auditory thresholds and fish behaviors to the underwater sounds for luring of target species at the set-net in the coast of Cheju. In order to obtain the critical ratio of yellow tails(Seriola quinqueradiata) and the emission level of underwater sound for luring of them, we make experiments to measure the auditory threshold of them using conditioning with electric shock. In state that the white noise with 10dB higher sound pressure level than ambient noise is emitted, the auditory thresholds of yellow tails are measured with 100~116.5dB and they are higher than those in state of no emission of white noise by the masking effects of it. Although sound pressure level of background noise go down, the auditory thresholds go up with frequency above than 300Hz.The critical ratio of yellow-tails in frequency of 80Hz, 100Hz, 200Hz, 500Hz, 800Hz are 46dB, 40dB, 50dB, 52dB, 60dB, 70dB respectively. The sound pressure level of which the signal sound is recognized by yellow tails under the ambient noise is above 100dB and the critical ratio of them is above 40dB.

  • PDF

Active Noise Control for Target Point Inside Bore Using Property of MRI Noise (MRI 소음의 특성을 이용한 공동 내부 목표점의 능동소음 제어)

  • Lee, Nokhaeng;Park, Youngjin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • Recently, MRI(magnetic resonance imager) scanner is continually used for medical diagnosis and many biomedical researches. When it operates, however, intense noise is generated. The SPL(sound pressure level) of the noise approaches 130 dB especially in 3 T(Tesla) MRI. Meanwhile, more than 3 T MRI scanners have been developed to get higher-resolution images, so louder noise is expected in the future. The intense noise makes patients feel nervous and uncomfortable. Moreover, it could possibly cause hearing loss to patient in extreme cases. For this reason, some active noise control systems have been researched. One of them used feedback Filtered-X LMS(FXLMS) algorithm which is able to control only narrowband noises and possible to diverge in severe case. In this paper, we determine the property of MRI noise. Using the property, we applied a method of open-loop and adaptive control for reducing MRI noise at target point inside bore. We verified performance of the method with computer simulation and preliminary experiment. The results demonstrate that the method can effectively reduce MRI noise at target point.

Low Noise Vacuum Cleaner Design (저소음 청소기 개발)

  • Joo, Jae-Man;Lee, Jun-Hwa;Hong, Seun-Gee;Oh, Jang-Keun;Song, Hwa-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.939-942
    • /
    • 2007
  • Vacuum cleaner is a close life product that can remove various dusts from our surroundings. However well vacuum cleaner clean our environments, many people are looking away from it, due to its loud noise. Its noise causes a big trouble in the usual life, for example, catch calls, TV watching and discussing etc. To reduce these inconveniences, noise reduction methods and systematic design of low noise vacuum cleaner are studied in this paper. At first, sound quality investigation is performed to get the noise level and quality that make people TV watching and catch calls available. Based on the European and domestic customer SQ survey result, sound power, peak noise level and target sound spectrum guideline are studied and introduced. As a second, precise product sound spectrums are designed into each part based on the sound quality result. Fan-motor, brush, mainbody, cyclone spectrums are decided to get the final target sound based on the contribution level. Fan-motor is the major noise source of vacuum cleaner. Specially, its peak sound, RPM peak and BPF Peak, cause the people nervous. To reduce these peak sounds, high rotating impeller and diffuser are focused due to its interaction. A lot of experimental and numerical tests, operation points are investigated and optimization of flow path area between diffusers is performed. As a bagless device, cyclones are one of the major noise sources of vacuum cleaner. To reduce its noise, previous research is used and adopted well. Brush is the most difficult part to reduce noise. Its noise sources are all comes from aero-acoustic phenomena. Numerical analysis helps the understanding of flow structure and pattern, and a lot of experimental test are performed to reduce the noise. Gaps between the carpet and brush are optimized and flow paths are re-designed to lower the noise. Reduction is performed with keeping the cleaning efficiency and handling power together and much reduction of noise is acquired. With all above parts, main-body design is studied. To do a systematic design, configuration design developments technique is introduced from airplane design and evolved with each component design. As a first configuration, fan-motor installation position is investigated and 10 configuration ideas are developed and tested. As a second step, reduced size and compressed configuration candidates are tested and evaluated by a lot of major factor. Noise, power, mass production availability, size, flow path are evaluated together. If noise reduction configuration results in other performance degrade, the noise reduction configuration is ineffective. As a third configuration, cyclones are introduced and the size is reduced one more time and fourth, fifth, sixth, seventh configuration are evolved with size and design image with noise and other performance indexes. Finally we can get a overall much noise level reduction configuration. All above investigations are adopted into vacuum cleaner design and final customer satisfaction tests in Europe are performed. 1st grade sound quality and lowest noise level of bagless vacuum cleaner are achieved.

  • PDF