• Title/Summary/Keyword: taper

Search Result 662, Processing Time 0.023 seconds

A Study on the Static Stiffness in the Main Spindle Taper of Machin Tool (공작기계 주축 테이퍼 결합부 정강성에 관한 연구)

  • 김배석;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.149-154
    • /
    • 2001
  • This paper presents the experimental study of the static stiffness for the BT Shank(7/24 Long Taper) and the HSK Tool Shank(1/10 Short taper). The static stiffness test was performed under different experimental conditions. The results obtained are as follows ; As known in the analysis results of the Load-Deflection diagram of the 7/24 Test tool shank, it is turned out that the diagram is a linear characteristics without regard to axial drawing force and according as the axial drawing force get to the 6kN, the static stiffness of the shank increase linearly. Thus the effective axial drawing force which maintains the static stiffness of the Main spindle taper of Machine Tool is larger than 6kN. It is found that the Load-Deflection diagram with 6kN of drawing force in the 1/10 Test tool shank is characterized by non-linear. But according as the axial drawing force is increasing by the 8kN, the diagram is characterized by linear. And increasing amount of deflection is about 60%. Therefore commendable axial drawing force is larger than 8kN. As a result, considering that the actual drawing force of the Machining Center is about 1300kgf and axial drawing force 12kN is equivalent amount as a 1220kgf, it is turned out that 1/10 Test tool shank superior to 7/24 Test tool shank in the static stiffness.

  • PDF

Analysis of taper-foremd optical coupler for the optical communication (광통신용 taper형 광 결합기의 해석)

  • 김선엽;노신래;손동희;강영진
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.98-106
    • /
    • 1998
  • Efficient power transmission from a single mode fiber to a thin-film waveguide devices is one of the most fundamental and inevitable subject that should be first solved toward the realization of the integrated optic system. In this paper, fiber-waveguide coupling structure is considered and the large mismatch of field profiles at the fiber-waveguide interface is well avoided by using to the coupling guide which is intentionally developed on the top of the thin-film guuide. From the simulation, the taper-type structure are shown to be easier realizeable than the uniform one, since optical coupling between the guides in the latter has a stronger tolerance to the deviation of waveguide parameters.

  • PDF

Influence of a glide path on the dentinal crack formation of ProTaper Next system

  • Turker, Sevinc Aktemur;Uzunoglu, Emel
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.4
    • /
    • pp.286-289
    • /
    • 2015
  • Objectives: The aim was to evaluate dentinal crack formation after root canal preparation with ProTaper Next system (PTN) with and without a glide path. Materials and Methods: Forty-five mesial roots of mandibular first molars were selected. Fifteen teeth were left unprepared and served as controls. The experimental groups consist of mesiobuccal and mesiolingual root canals of remaining 30 teeth, which were divided into 2 groups (n = 15): Group PG/PTN, glide path was created with ProGlider (PG) and then canals were shaped with PTN system; Group PTN, glide path was not prepared and canals were shaped with PTN system only. All roots were sectioned perpendicular to the long axis at 1, 2, 3, 4, 6, and 8 mm from the apex, and the sections were observed under a stereomicroscope. The presence/absence of cracks was recorded. Data were analyzed with chi-square tests with Yates correction. Results: There were no significant differences in crack formation between the PTN with and without glide path preparation. The incidence of cracks observed in PG/PTN and PTN groups was 17.8% and 28.9%, respectively. Conclusions: The creation of a glide path with ProGlider before ProTaper Next rotary system did not influence dentinal crack formation in root canals.

Effect of adaptive motion on cyclic fatigue resistance of a nickel titanium instrument designed for retreatment

  • Ozyurek, Taha;Yilmaz, Koray;Uslu, Gulsah
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.1
    • /
    • pp.34-38
    • /
    • 2017
  • Objectives: The aim of this study was to evaluate the cyclic fatigue resistance of the ProTaper Universal D1 file (Dentsply Maillefer) under continuous and adaptive motion. Materials and Methods: Forty ProTaper Universal D1 files were included in this study. The cyclic fatigue tests were performed using a dynamic cyclic fatigue testing device, which had an artificial stainless steel canal with a $60^{\circ}$ angle of curvature and a 5 mm radius of curvature. The files were randomly divided into two groups (Group 1, Rotary motion; Group 2, Adaptive motion). The time to failure of the files were recorded in seconds. The number of cycles to failure (NCF) was calculated for each group. The data were statistically analyzed using Student's t-test. The statistical significant level was set at p < 0.05. Results: The cyclic fatigue resistance of the adaptive motion group was significantly higher than the rotary motion group (p < 0.05). Conclusion: Within the limitations of the present study, the 'Adaptive motion' significantly increased the resistance of the ProTaper Universal D1 file to cyclic facture.

Study on the effect of vacuum fusion infiltration technology on the properties of tungsten/copper joining interface

  • Hao-Jie Zhang;Xue-qin Tian;Xiao-Yu Ding;Hui-Yun Zheng;Lai-Ma Luo;Yu-Cheng Wu;Jian-Hua Yao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2367-2374
    • /
    • 2024
  • In this paper, based on the need for high-strength connections between all-tungsten-oriented plasma materials and thermal sinking materials of copper and its alloys in nuclear fusion devices, a study on the effect of tungsten surface laser micro structuring on the interfacial bonding properties of W/Cu joints was carried out. In the experiment, the connectors were prepared by vacuum fusion infiltration technology, and the effects of microgroove structure on the mechanical and thermal conductivity of W/Cu connectors were investigated under different parameters (including microgroove pitch, microgroove depth, and microgroove taper). The maximum shear strength is 126.0 MPa when the pitch is 0.15 mm and the depth is 34 ㎛. In addition, the negative taper structure, i.e., the width of the entrance of the microstructure is smaller than the width of the interior of the microstructure, is also investigated. The shear tests show that there is an approximately linear relationship between the shear strength of W/Cu and taper. Compared with the positive taper, the shear strength of the samples with the same morphological density and depth of the tungsten surface is significantly higher.

Performance Analysis of Oil-lubricated Thrust Collars in Integrally Geared Compressors (증속 기어 압축기용 스러스트 칼라의 윤활 성능 해석)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.169-174
    • /
    • 2018
  • A multi-stage compressor (MSC) is comprised of several impellers installed in the pinion gear shaft driven by a main bull gear. In the pinion shaft, a thrust collar (TC) is installed to support the thrust load. The TC makes the lubrication system simpler in the MSC; therefore, it is widely used in similar kinds of machinery. Typically, TCs are installed on both sides of the bull gear and pressure is developed in the lubricated area by creating a taper angle on the TC and bull gear surface. In the current study, we developed a numerical analysis model to evaluate the performance of the TC considering its design parameters. We sloved the Reynolds equation using the finite element method and applied the half Sommerfeld condition to consider cavitation. Based on the pressure calculated in the lubricated area, we calculated the power loss and minimum film thickness. In addition, we calculated stiffness and damping using perturbation method. We performed parametric studies using the developed model. The results of the analysis show that the maximum pressure presents in the center area of the TC and it increases with the taper angle. The area over which pressure is developed decreases with the taper angle. The results also show that there is an optimum taper angle providing minimum power loss and maximum film thickness. Additionally, the stiffness and damping decrease with the taper angle. As the applied load increases, the power loss increases and the minimum film thickness decreases. However, the stiffness and damping increase with the applied load.

Free vibration analysis of a non-uniform beam with multiple point masses

  • Wu, Jong-Shyong;Hsieh, Mang
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.449-467
    • /
    • 2000
  • The natural frequencies and the corresponding mode shapes of a non-uniform beam carrying multiple point masses are determined by using the analytical-and-numerical-combined method. To confirm the reliability of the last approach, all the presented results are compared with those obtained from the existing literature or the conventional finite element method and close agreement is achieved. For a "uniform" beam, the natural frequencies and mode shapes of the "clamped-hinged" beam are exactly equal to those of the "hinged-clamped" beam so that one eigenvalue equation is available for two boundary conditions, but this is not true for a "non-uniform" beam. To improve this drawback, a simple transformation function ${\varphi}({\xi})=(e+{\xi}{\alpha})^2$ is presented. Where ${\xi}=x/L$ is the ratio of the axial coordinate x to the beam length L, ${\alpha}$ is a taper constant for the non-uniform beam, e=1.0 for "positive" taper and e=1.0+$|{\alpha}|$ for "negative" taper (where $|{\alpha}|$ is the absolute value of ${\alpha}$). Based on the last function, the eigenvalue equation for a non-uniform beam with "positive" taper (with increasingly varying stiffness) is also available for that with "negative" taper (with decreasingly varying stiffness) so that half of the effort may be saved. For the purpose of comparison, the eigenvalue equations for a positively-tapered beam with five types of boundary conditions are derived. Besides, a general expression for the "normal" mode shapes of the non-uniform beam is also presented.

Plugger temperature of cordless heat carriers according to the time elapsed

  • Chang, Hoon-Sang;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.12.1-12.7
    • /
    • 2018
  • Objective: The purpose of this study was to measure the temperature of the plugger tip of 3 cordless heat carriers set at $200^{\circ}C$. Materials and Methods: Pluggers of the same taper (0.06, 0.08, 0.10) and similar tip sizes (sizes of 50 and 55) from 3 cordless heat carriers, namely SuperEndo-${\alpha}^2$(B & L Biotech), Friendo (DXM), and Dia-Pen (Diadent), were used and an electric heat carrier, System B (SybronEndo), was used as the control. The plugger tips were covered with customized copper sleeves, heated for 10 seconds, and the temperature was recorded with a computerized measurement system attached to a K-type thermometer at room temperature (n = 10). The data were analyzed with 2-way analysis of variance at a 5% level of significance. Results: The peak temperature of the plugger tips was significantly affected by the plugger taper and by the heat carrier brand (p < 0.05). The peak temperature of the plugger tips was between $177^{\circ}C$ and $325^{\circ}C$. The temperature peaked at $207^{\circ}C-231^{\circ}C$ for the 0.06 taper pluggers, $195^{\circ}C-313^{\circ}C$ for the 0.08 taper pluggers, and $177^{\circ}C-325^{\circ}C$ for the 0.10 taper pluggers. Only 5 of the 12 plugger tips showed a temperature of $200^{\circ}C{\pm}10^{\circ}C$. The time required to reach the highest temperature or $200^{\circ}C{\pm}10^{\circ}C$ was at least 4 seconds. Conclusion: When using cordless heat carriers, clinicians should pay attention to the temperature setting and to the activation time needed to reach the intended temperature of the pluggers.

EFFECT OF VARIOUS CANAL PREPARATION TECHNIQUES USING ROTARY NICKEL-TITANIUM FILES ON THE MAINTENANCE OF CANAL CURVATURE (수종의 엔진구동형 Nickel-Titanium file을 이용한 근관형성 방법이 근관만곡도 유지능력에 미치는 영향)

  • Lee, Cheol-Hwan;Cho, Kyung-Mo;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.1
    • /
    • pp.41-49
    • /
    • 2003
  • There are increasing usage of Nickel-Titanium rotary files in modern clinical endodontic treatment because it is effective and faster than hand filing due to reduced step. This study was conducted to evaluate the effect of canal preparations using 3 different rotary Nickel-Titanium files that has different cross sectional shape and taper on the maintenance of canal curvature. Simulated resin block were instrumented with Profile(Dentsply, USA), GT rotary files(Dentsply, USA), Hero 642(Micro-Mega France), and Pro-Taper(Dentsply, USA). The image of Pre-instrumentation and Post-instrumentation were acquired using digital camera and overspreaded in the computer. Then the total differences of canal diameter, deviation at the outer portion of curvature, deviation at the inner portion of curvature, movement of center of the canal and the centering ratio at the pre-determined level from the apex were measured. Results were statistically analyzed by means of ANOVA, followed by Scheffe test at a significance level of 0.05. The results were as follows; 1. Deviation at the outer portion of curvature, deviation at the inner portion of curvature were showed largest in Pro-Taper so also did in the total differences of canal diameter(p<0.05). 2. All the groups showed movements of center Profile combined with GT rotary files and Hero 642 has no difference but Pro-Taper showed the most deviation(p<0.05). 3. At the 1, 2, 3mm level from the apex movements of center directed toward the outer portion of curvature, but in 4, 5 mm level directed toward the inner portion of curvature(p<0.05). As a results of this study, it could be concluded that combined use of other Nickel-Titanium rotary files is strongly recommended when use Pro-Taper file because it could be remove too much canal structure and also made more deviation of canal curvature than others.

Comparison of canal transportation in simulated curved canals prepared with ProTaper Universal and ProTaper Gold systems

  • Silva, Emmanuel Joao Nogueira Leal;Muniz, Brenda Leite;Pires, Frederico;Belladonna, Felipe Goncalves;Neves, Aline Almeida;Souza, Erick Miranda;De-Deus, Gustavo
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Objectives: The purpose of this study was to assess the ability of ProTaper Gold (PTG, Dentsply Maillefer) in maintaining the original profile of root canal anatomy. For that, ProTaper Universal (PTU, Dentsply Maillefer) was used as reference techniques for comparison. Materials and Methods: Twenty simulated curved canals manufactured in clear resin blocks were randomly assigned to 2 groups (n = 10) according to the system used for canal instrumentation: PTU and PTG groups, upto F2 files (25/0.08). Color stereomicroscopic images from each block were taken exactly at the same position before and after instrumentation. All image processing and data analysis were performed with an open source program (FIJI). Evaluation of canal transportation was obtained for two independent canal regions: straight and curved levels. Student's t test was used with a cut-off for significance set at ${\alpha}=5%$. Results: Instrumentation systems significantly influenced canal transportation (p < 0.0001). A significant interaction between instrumentation system and root canal level (p < 0.0001) was found. PTU and PTG systems produced similar canal transportation at the straight part, while PTG system resulted in lower canal transportation than PTU system at the curved part. Canal transportation was higher at the curved canal portion (p < 0.0001). Conclusions: PTG system produced overall less canal transportation in the curved portion when compared to PTU system.