• Title/Summary/Keyword: tap water

Search Result 889, Processing Time 0.025 seconds

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

A Study on the Distribution Characteristics of Bromide and Bromate in Drinking Water in Northern Gyeonggi Area (경기북부지역 먹는 물 중 브롬이온 및 브롬산염의 분포특성에 관한 연구)

  • Jung, Jong-Pil;Choi, Si-Rim;Ryu, Hyeung-Rial;Park, Gyoung-Su;Song, Hee-Il;Lee, Hyun-Jin;Jo, Mi-Hyun;Oh, Jo-Gyo;Yoon, Mi-Hye
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.3
    • /
    • pp.244-249
    • /
    • 2018
  • Objectives: The purpose of this study was the investigation of bromide and bromate in drinking water of water supply plants, mineral springs and small water supply system located in northern area of Gyeonggi province. Methods: Analytical method was based on EPA 326.0 to use Postcolumn reaction (PCR). The instrument was 887 professional UV/VIS detector IC manufactured in Metrohm. Results: Bromate was detected at $0.5{\sim}2.4{\mu}g/L$ in tap water from 5 water supply plants. These plants were used as disinfection method for sodium hypochlorite and on-site chlorine that causes generate bromate as a by products even if not used ozone. Conclusions: The bromate was detected up to $2.5{\mu}g/Lin$ drinking water in northern Gyeonggi area that showed within $10{\mu}g/L$ for standard of tap water. However, the continuous monitoring of bromate is necessary in drinking water.

Manganese removal by KMnO4: Effects of bicarbonate and the optimum conditions (과망간산칼륨을 이용한 용해성 망간 제거: 중탄산염 영향 및 최적조건)

  • Lee, Yong-Soo;Do, Si-Hyun;Kwon, Young-Eun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.207-213
    • /
    • 2016
  • This study is focused on manganese (Mn(II)) removal by potassium permanganate ($KMnO_4$) in surface water. The effects of bicarbonate on Mn(II) indicated that bicarbonate could remove Mn(II), but it was not effectively. When 0.5 mg/L of Mn(II) was dissolved in tap water, the addition of $KMnO_4$ as much as $KMnO_4$ to Mn(II) ratio is 0.67 satisfied the drinking water regulation for Mn (i.e. 0.05 mg/L), and the main mechanism was oxidation. On the other hand, when the same Mn(II) concentration was dissolved in surface water, the addition of $KMnO_4$, which was the molar ratio of $KMnO_4/Mn(II)$ ranged 0.67 to 0.84 was needed for the regulation satisfaction, and the dominant mechanisms were both oxidation and adsorption. Unlike Mn(II) in tap water, the increasing the reaction time increased Mn(II) removal when $KMnO_4$ was overdosed. Finally, the optimum conditions for the removals of 0.5 - 2.0 mg/L Mn(II) in surface water were both $KMnO_4$ to Mn(II) ratio is 0.67 - 0.84 and the reaction time of 15 min. This indicated that the addition of $KMnO_4$ was the one of convenient and effective methods to remove Mn(II).

Storage Effects of Seawater and Tapwater Ice For Freshness of Mackerel(Scomber japonicus) (고등어 신선도 유지를 위한 해수와 담수 얼음의 저장효과)

  • Lee, Nahm-Gull
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.860-869
    • /
    • 2020
  • This study was conducted to see the effect of maintaining the freshness of mackerel caught offshore, through the chemical analysis method in seawater slurry ice(SS), sea water cube ice(SC), tap water slurry ice(TS) and tap water cube ice(TC). Among each ice mass, bacteria were below the drinking water standard and ammonia nitrogen was over the threshold of 11 mg/l in sea water. The turbidity of the seawater was severe compared to that of fresh water. Proximate compositions showed 72.7% moisture content, 20.5% protein, 5.25% lipid, and 1.3% ash content. Sea slurry ice was kept low in pH compared with fresh water ice. VBN increases were inhibited in all reservoirs at the beginning of the storage. Generally Sea ice was kept lower VBN value than the fresh water ice.

Evaluation of Water Quality in the Keumho River System According to the Freshwater Fishes (담수어를 이용한 금호강수계의 수질판정)

  • 강영훈;채병수;양홍준
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 2001
  • The fish species collected in the Keumho River basin are 42 species 31 genera belonging to 15 Families. This report was investigated for the evaluation of water quality in the Keumho River system which is a tributary of Nakdong River in Korea on september in 1999. The fishes collected were 42 species, 31 genera belonging to 15 Families. The dominant species were 5 species; Zacco platypus, Zacco temmincki, Squalidus chankaensis tsuchigae, Moroco oxycephalus, Squalidus gracilis majimae, and 8 species; Hemibarbus longirostris, Pseudogobio esocinus, Culter brevicauda, Cobitis rotundicaudata, Pseudobagrus fulvidraco, Pungitius sinensis kaibarae, Monopterus albus, Channa argus were rare species. The relationship among the GPI, EC and BOD by the organic pollutants were over 0.9. The group pollution index(GPI) was lowest at St. 1(0.85) and highest at St. 1(0.85) and highest at St. 5(2.33). The water quality of the Keumho river divided into 3 parts; the water of upper reaches in river(St. 1) was 1st class(oligotrophic condition), middle parts(St. 2, 3, 4) were 3rd class($\alpha$-mesosaprobic condition) and lower part(St. 5) was 4th class(Polysaprobic condition) as the source of tap water, respectively. And the tributary which are the Sinryeong Stream(St. 6), the Sincheon(St. 7) and the Donghwa Stream(St. 9) in Keumho river were 2nd class as the source of tap water. The results in this study was represented same patterns as the result by the use of indicator species like as algae and invertebrates for the discrimination of water quality. So, some freshwater fish species can be use applicant for the discrimination of water quality.

  • PDF

A Study on Production of Chlorophenols by Chlorinaion of Drinking Water (상수 염소 소독에 의한 클로로페놀 생성에 관한 연구)

  • Chung, Yong;Kwon, Sook-Pyo;Park, Ha-Young
    • YAKHAK HOEJI
    • /
    • v.24 no.2
    • /
    • pp.87-95
    • /
    • 1980
  • Chlorination to polluted water can produce chlorocompounds which may impair human health. It has been discussed that chlorophenols would be one of undesirable substances in drinking water. This study was undertaken to investigate the production mechanism of chlorophenols by chlorination in the disinfection of water and to determine pollution levels of phenols as precursor of chlorophenols and chloropbenols in some sewage, stream water and tap water in the vicinity of Seoul from January to September, 1979. By chlorination with hyperchlorite to phenols in distilled water, o-chlorophenol was predominantly produced at the concentration of less than 10ppm of free chlorine. o-Chlorophenol, 2,6-dichlorophenol and 2,4-dichlorophenol were also produced by chlorination with the concenration from 20 to 100ppm of free chlorine. From the concentration of 100ppm of free chlorine to 200ppm, o-Chlorophenol was vanished and 2,6-dichlorophenol and 2,4-dichlorophenol were determined. Phenols originated from night soil, municipal sewage and stream were determined at 49.15 ppm. 0.095 ppm and 0.003 ppm in average respectively. About 87 and 88 percent of phenols in sewage and night soil were biodegradated by aeration for 10 days and 74 and 51 percent of phenols in sewage and night soil by spontaneous settling for 10 days. From the tap water in Seoul during summer, 1979, chlorophenols were identified; they were average 0.042 ppb of o-chlorophenol, 0.033 ppb of 2, 6-dichlorophenol and 0.003 ppb of 2, 4-dichlorophenol respectively. With the above result and discussion, it is considered that chlorophenols should be controlled from the source as well as chlorination in water purification.

  • PDF

Development of Eco-friendly Cement using Reverse Osmosis Brine Water and Metakaolin (역삼투압 농축수와 메타카올린을 사용한 친환경 시멘트의 개발)

  • Kim, Taewan;Han, Ki-Bong;Kim, Do-Hyung;Seo, Ki-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.216-222
    • /
    • 2021
  • This is an experiment to complement new ways of using concentrated water discharged from the seawater desalination plant. In this study, metakaolin, which has excellent chloride ion immobilization effect, was used as the main binder, and 10% and 20% of calcium oxide were substituted with the activator. In addition, tap-water(TW) and reverse osmosis brine water(RW) were used as mixed water. As a result of the experiment, the mixture using RW showed higher compressive strength than TW. It also showed low water absorption and high density. In the mixture using RW as mixed water, a hydration reaction substance called Friedel's salt could be observed. Considering the corrosion problem of steel, RW is considered to be applicable to products such as non-reinforced concrete, brick, and curb stone. Through this study, it is thought that it is meaningful to propose a new application method other than the ocean release of RW.

AN EXPERIMENTAL STUDY ON THE PORCELAIN POROCITY EXERTED BY THE CONTAMINATION OF THE CERAMO-METAL ALLOY AND LIQUID (도재소부전장금관용 합금과 용액의 오염이 기포발생에 미치는 영향에 관한 실험적 연구)

  • Jeun, Young-Chan;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.20 no.1
    • /
    • pp.33-49
    • /
    • 1982
  • This study was undertaken to observe the porcelain porosity exerted by the contamination of the alloy and liquid. The alloy used in this study was Jelstar; liquids were Ceramco Sta-Wet liquid, distilled water and tap water; and Ceramco vacuum porcelain powder was used. The measurements with photomicroscope (x200, Olympus) were made on the porosity, the diameter (mm) of the pores and the numbers of the pores ($No/mm^2$) The results of this study were obtained as follows: 1. In the porosity, the opaque layer contained over 70% of the total porosity, and the porosity was increased about twice in every porcelain layer by the tap water. 2. The contamination of the alloy and liquid caused porosity to increase markedly at the interface of the metal-porcelain. 3. The diameter of the pores were increased about 1.5 times larger by the contaimination of the liquid, and only a slight increase in the opaque layer due to the contamination of the alloy. 4. In the numbers of the pores, there were significant differences according to the contamination of the alloy and the porcelain layer. And the contamination of the liquid caused significant differences only in the opaque layer.

  • PDF

Detection of chlorine in tap water using a metal gold electrode (금속 Au 전극을 이용한 먹는 물 속 염소 이온 검출)

  • Ly, Suw-Young;Choa, Sung-Hoon
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.219-224
    • /
    • 2011
  • Voltammetric analysis of Cl(I) ion was performed using a metal gold (Au) electrode (AE) and a carbon nanotube electrode (CNTE). After the examination, the AE was found to have more sensitively detected Cl(I) than CNTE. The optimum analytical conditions for the cyclic voltammetry (CV) and the square wave (SW) stripping voltammetry were performed using AE. The detection limit of $6.5\;{\mu}g/L$ Cl(I) was attained. The developed techniques were compared with the common Cl meter and applied to water systems.

Effect of Natural Fiber Surface Treatments on the Interfacial and Mechanical Properties of Henequen/Polypropylene Biocomposites

  • Lee, Hyun-Seok;Cho, Dong-Hwan;Han, Seong-Ok
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.411-417
    • /
    • 2008
  • The surfaces of henequen fibers, which can be obtained from the leaves of agave plants, were treated with two different media, tap water and sodium hydroxide, that underwent both soaking and ultrasonic methods for the fiber surface treatment. Various biocomposites were fabricated with untreated and treated, chopped henequen fibers and polypropylene using a compression molding method. The result is discussed in terms of interfacial shear strength, flexural properties, dynamic mechanical properties, and fracture surface observations of the biocomposites. The soaking (static method) and ultrasonic (dynamic method) treatments with tap water and sodium hydroxide at different concentrations and treatment times significantly influenced the interfacial, flexural and dynamic mechanical properties of henequen/polypropylene biocomposites. The alkali treatment was more effective than the water treatment in improving the interfacial and mechanical properties of randomly oriented, chopped henequen/PP bio-composites. In addition, the application of the ultrasonic method to each treatment was relatively more effective in increasing the properties than the soaking method, depending on the treatment medium and condition. The greatest improvement in the properties studied was achieved by ultrasonic alkalization of natural fibers, which was in agreement with the other results of interfacial shear strength, flexural strength and modulus, storage modulus, and fracture surfaces.