• Title/Summary/Keyword: tandem OLED

Search Result 21, Processing Time 0.032 seconds

Advances in White OLED Tandem Architecture for Next Generation AMOLED Displays

  • Hatwar, T.K.;Spindler, J.P.;Vargas, J.R.;Helber, M.;Klubek, K.;Begley, W.;Itoh, M.;Hamer, J.;VanSlyke, S.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.231-234
    • /
    • 2007
  • Advances in white OLED tandem architecture are discussed.With these structures, stable and low-power full color AMOLED displays can be fabricated that are anticipated to be suitable for large area applications such as TVs. With a tandem architecture, efficient (24 cd/A) OLED structures with exceptional stability (${\sim}100,000\;h$ at $1000\;cd/m^2$) are described. In addition, excellent color gamut (>100% NTSC) can be attained by incorporating advanced color filters into the AMOLED backplane in a typical bottom-emitting configuration.

  • PDF

White Tandem Organic Light-Emitting Diodes Using Red and Blue Fluorescent Materials (적색과 청색 형광 물질을 사용한 백색 적층 OLED)

  • Park, Chan-Suk;Kong, Do-Hun;Kang, Ju-Hyun;Yun, Sung-Hyuk;Ju, Sung-Hoo
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.3
    • /
    • pp.115-120
    • /
    • 2015
  • We studied white tandem organic light-emitting diodes using red and blue fluorescent materials. White 2 units tandem OLEDs were fabricated using $Alq_3$:Rubrene (3 vol.% 5 nm) and SH-1 : BD-2 (3 vol.% 25 nm) as emitting layer (EML). The device with $Alq_3$ : Rubrene (3 vol.% 5 nm) / SH-1 : BD-2 (3 vol.% 25 nm) showed yellowish white emission with a Commission Internationale de l'Eclairage (CIE) coordinates of (0.442, 0.473) at $1,000cd/m^2$, and variation of CIE coordinates was low with ($0.44{\pm}0.002$, $0.472{\pm}0.001$) from 500 to $3,000cd/m^2$. White 3 units tandem OLEDs were fabricated by additory stacking the blue or white layer as EML. CIE coordinates of 3 units tandem OLEDs with stacked blue and white layer was low variation of ($0.293{\pm}0.008$, $0.36{\pm}0.005$) and ($0.412{\pm}0.002$, $0.423{\pm}0.001$) from 500 to $3,000cd/m^2$, respectively. Our findings suggest that stacked OLED was possible to controlling CIE coordinates and producing excellent color stability.

Emission Characteristics of Dual Emission Tandem OLED with Charge Generation Layer MoOx and Cathode Al Thickness (전하생성층 MoOx와 음극 Al의 두께에 따른 양면발광 적층 OLED의 발광 특성)

  • Kim, Ji-Hyun;Ju, Sung-Hoo
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.316-321
    • /
    • 2016
  • To study emission characteristics for dual-emission tandem organic light emitting display (OLED), we fabricated blue fluorescent OLED according to thickness variation of $MoO_x$ as charge generation layer and Al as cathode. The bottom emission characteristics of OLED with $MoO_x$ 2, 3, 5 nm thickness showed threshold voltage of 9, 7, 9 V, maximum current emission efficiency of 19.32, 23.18, 15.44 cd/A and luminance of $1,000cd/m^2$ at applied voltage of 17.6, 13.2, 16.5 V, respectively. The top emission characteristics of OLED with $MoO_x$ 2, 3, 5 nm thickness indicated threshold voltage of 13, 10, 13 V, maximum current emission efficiency of 0.17, 0.23, 0.16 cd/A and luminance of $50cd/m^2$ at applied voltage of 22.6, 16.5, 20.1 V, respectively. In case of thicker or thinner than $MoO_x$ of 3 nm, the emission characteristics were decreased because of mismatching of electron and hole in emission layer. The bottom emission characteristics of OLED with Al 15, 20, 25 nm thickness showed threshold voltage of 8, 8, 7 V, maximum current emission efficiency of 18.42, 22.98, 23.18 cd/A and luminance of $1000cd/m^2$ at applied voltage of 16.2, 13.9, 13.2 V, respectively. The reduction of threshold voltage and increase of maximum current emission efficiency are caused by the increase of current injection according to increase of Al cathode thickness. The top emission characteristics of OLED with Al 15, 20, 25 nm thickness indicated threshold voltage of 7, 7, 8 V, maximum emission luminance of 371, 211, $170cd/m^2$, respectively. The top emission OLED of Al cathode with 15 nm thickness showed maximum luminance and it decreased at thickness of 20 nm. These phenomena are caused by the decrease of intensity of emitted light by reduction of optical transmittance according to increase of Al cathode thickness.

Tandem reflective LCD and OLED

  • Lee, Jiun-Haw;Xianyu, Haiqing;Ge, Zhibing;Liu, Kou-Chen;Wu, Shin-Tson
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.977-979
    • /
    • 2007
  • We demonstrate a hybrid device with high ambien t-contrast-ratio (>133.8:1) under any ambient co nditions by vertically integrating a reflective LCD and a transparent OLED. The twisted nematic LC cell is placed beneath the OLED to improve dev ice transmittance by 53.8% due to the asymmet ric emission from both-sides of the transparent OLED.

  • PDF

High Performance Tandem OLEDs for Large Area Full Color AM Displays and Lighting Applications

  • Hatwar, T.K.;Spindler, J.P.;Slyke, S.A. Van
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1577-1582
    • /
    • 2006
  • Tandem OLED structures formed by connecting two or more low-voltage electroluminescent units (stacks) are effective for achieving high efficiency at low current density as well as long operational lifetime. We have fabricated white emitting tandem structures with two or three low-voltage white-emitting stacks using transparent organic "PN"-type connectors. Three- stack white tandem structures with efficiency greater than 24 cd/A at D65 and operational stability of about 110,000 h. (extrapolated) at $1000\;cd/m^2$ have been demonstrated. With a stacked structure, the power consumption for displays using an RGBW format can be reduced by 25% compared to previously described formulations. We have also fabricated advanced white tandem structures where the color gamut (NTSC x,y ratio) has been improved to greater than 70% using standard color filters. The white OLEDs can also be used to increase the colorrendering index CRI (>80%), an important consideration for solid-state lighting.

  • PDF

Tandem white organic light emitting diodes comprising of red, green, blue emission

  • Yang, Jung-Jin;Suman, C.K.;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.820-822
    • /
    • 2009
  • Tandem white organic light emitting diodes (WOLEDs) are fabricated by using a transparent interconnecting layer of Al:LiF composite/molybdenum oxides ($MoO_3$). We demonstrate two types of tandem WOLEDs consisting of two color emissions (red and blue emission) and three color emissions (red, green and blue emission). Tandem WOLED consisting of three color emission shows higher external quantum efficiency and current efficiency.

  • PDF

Electromagnetic Modeling of OLEDs and Its Applications to Advanced OLEDs

  • Wu, Chung-Chih;Lin, Chun-Liang;Cho, Ting-Yi;Yang, Chih-Jen;Lu, Yin-Jui
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.5-8
    • /
    • 2006
  • The optical structures and rigorous electromagnetic modeling of OLEDs will be discussed of first and then their applications in analyses and designs of various advanced OLED structures, e.g. microcavity OLEDs, tandem OLEDs and top-emitting OLEDs etc., will be reported.

Interface Study of the Intermediate Connectors in Tandem Organic Devices

  • Tang, Jian-Xin;Fung, Man-Keung;Lee, Chun-Sing;Lee, Shuit-Tong
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • The intermediate connectors play crucial roles in the performance of tandem organic light-emitting diodes (OLEDs) because they are required to facilitate charge carrier transport and to guarantee transparency for light transmission and deposition compatibility. Understanding the physical properties of the intermediate connector is not only fundamentally important but is also crucial to developing high-efficiency organic devices with a tandem structure. In this study, several effective intermediate connectors in tandem OLEDs using a doped or non-doped organic p-n heterojunction were systematically investigated by studying their interfacial electronic structures and corresponding device characteristics. The working mechanisms of the intermediate connectors are discussed herein by referring to their relevant energy levels with respect to those of the neighboring organic layers. The factors affecting the operation of the intermediate connectors in tandem OLEDs, as demonstrated herein, provide guidance for the identification of new materials and device architectures for high-performance devices.

White Organic Light-emitting Diodes using the Tandem Structure Incorporating with Organic p/n Junction

  • Lee, Hyun-Koo;Kwon, Do-Sung;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.8 no.2
    • /
    • pp.20-24
    • /
    • 2007
  • Efficient white organic light-emitting diodes are fabricated with the blue and red electroluminescent (EL) units electrically connected in a stacked tandem structure by using a transparent doped organic p/n junction. The blue and red EL units consist of the light-emitting layer of 1,4-bis(2,2-diphenyl vinyl)benzene (DPVBi) and 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j] quinolizin-8-yl)vinyl]-4H-pyran) (DCM2) doped tris(8-hydroxyquinoline) aluminum $(Alq_3)$, respectively. The organic p-n junction consists of ${\alpha}-NPD$ doped with $FeCl_3$ (15 % by weight ratio) and $Alq_3$ doped with Li (10 %). The EL spectra exhibit two peaks at 448 and 606 nm, resulting in white light-emission with the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.36, 0.24). The tandem device shows the quantum efficiency of about 2.2 % at a luminance of 100 $cd/m^2$, higher than individual blue and red EL devices.

Insertion of an Organic Hole Injection Layer for Inverted Organic Light-Emitting Devices

  • Park, Sun-Mi;Kim, Yun-Hak;Lee, Yeon-Jin;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.379-379
    • /
    • 2010
  • Recent technical advances in OLEDs (organic light emitting devices) requires more and more the improvement in low operation voltage, long lifetime, and high luminance efficiency. Inverted top emission OLEDs (ITOLED) appeared to overcome these problems. This evolved to operate better luminance efficiency from conventional OLEDs. First, it has large open area so to be brighter than conventional OLEDs. Also easy integration is possible with Si-based driving circuits for active matrix OLED. But, a proper buffer layer for carrier injection is needed in order to get a good performance. The buffer layer protects underlying organic materials against destructive particles during the electrode deposition and improves their charge transport efficiency by reducing the charge injection barrier. Hexaazatriphenylene-hexacarbonitrile (HAT-CN), a discoid organic molecule, has been used successfully in tandem OLEDs due to its high workfunction more than 6.1 eV. And it has the lowest unoccupied molecular orbital (LUMO) level near to Fermi level. So it plays like a strong electron acceptor. In this experiment, we measured energy level alignment and hole current density on inverted OLED structures for hole injection. The normal film structure of Al/NPB/ITO showed bad characteristics while the HAT-CN insertion between Al and NPB greatly improved hole current density. The behavior can be explained by charge generation at the HAT-CN/NPB interface and gap state formation at Al/HAT-CN interface, respectively. This result indicates that a proper organic buffer layer can be successfully utilized to enhance hole injection efficiency even with low work function Al anode.

  • PDF