• Title/Summary/Keyword: tallow

Search Result 233, Processing Time 0.024 seconds

Alteration of the Fatty Acid Profile of Pork by Dietary Manipulation

  • Morel, P.C.H.;McIntosh, J.C.;Janz, J.A.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.431-437
    • /
    • 2006
  • This work was undertaken to study the effect of dietary fat source on the fatty acid profile of pork, and to evaluate the effect of inclusion of vitamin E in pig diets on lipid oxidation of pork tissue and processed pork products. Fifty-six pigs were allocated to four treatments, that included two dietary fat sources and two levels of vitamin E inclusion. Dietary fat was derived from either tallow, a source of saturated fatty acids (SFA), or from a mixture of soybean and linseed oils, which contain polyunsaturated fatty acids (PUFA). Vitamin E was included at either 0% or 0.011% of the diet. Growth and carcass characteristics were not affected by the dietary treatments. Dietary fat source affected the fatty acid profile of the longissimus muscle and subcutaneous fat tissue, with the PUFA diet resulting in significantly more polyunsaturated fatty acids in the tissues, and more favourable ratios of SFA to PUFA and C18:2 to C18:3 in terms of human health considerations. Lipid oxidation was significantly greater in tissues and processed products from PUFA-fed pigs. Inclusion of vitamin E in the diets, however, reduced the extent of lipid oxidation in the meat and meat products. Dietary manipulation of the fatty acid profile of pigs is an effective means of altering the fat composition of pork in order to provide human consumers with a healthy product. Vitamin E is effective as an antioxidant agent, particularly where processed products are concerned.

Effect of Garlic Supplement and Exercise on Plasma Lipid and Antioxidant Enzyme System in Rats (마늘의 섭취와 운동이 혈장지질과 항산화효소계에 미치는 영향)

  • Yoon Gun-Ae
    • Journal of Nutrition and Health
    • /
    • v.39 no.1
    • /
    • pp.3-10
    • /
    • 2006
  • Effects of garlic powder supplementation on blood lipid profile and antioxidant system were investigated in rats with and without swimming exercise. Sprague-Dawley rats of four experimental groups were fed for 4 weeks diets containing $15\%$ beef tallow and $1\%$ cholesterol; control without garlic and exercise, Go with $2\%$ garlic alone, Ex with exercise alone, GoEx with $2\%$ garlic and exercise. Rats were trained 40 min a days a days a week. Group Ex and GoEx showed significant lowering in body weight gain and fat accumulation. In Go, Ex and GoEx, plasm TG and LDL-C were lower and HDL-C was higher, although not significantly, compared to levels in control. Total cholesterol was significantly reduced in group Go, and Ex and GoEx were lower than control. The total/HDL cholesterol ratio was also found to be significantly different, decreasing the ratios in Go, Ex and GoEx. The hepatic TBARS increased significantly in group Ex $(51.7{\pm}3.43nM/g\;liver)$, while TBARS in Go and GoEx were low $(35.68{\pm}3.61,\;39.30{\pm}5.55nM/g\;liver)$ and similar to control's one. The activity of hepatic SOD in Go and GoEx tended higher than control and Ex without garlic. The hepatic catalase showed significantly the highest activity in Go. Activity of GSH-px was significantly low in Ex with $0.14{\pm}0.03$ unit/mg protein, and control, Go and GoEx had higher activities of $0.23{\pm}0.08,\;0.20{\pm}0.07,\;0.22{\pm}0.01\;unit/mg$ protein, respectively. Lower activities of antioxidant enzymes in Ex are likely to associated with the highest level of TBARS. It seems that a decrease in TBARS in GoEx relative to Ex was related to the increase in GSHpx and SOD with garlic supplemented, which led to compensate the oxidative stress from exercise. The results suggests that exercise or garlic supplement exerts blood lipid attenuating effect. In adition, garlic supplementation could strengthen the antioxidant potential against exercise-induced oxidants, partly by modulating oxidant enzyme activity. These effects of garlic may make it a beneficial agent on CVD.

Effect of Perilla Oil Rich in $\alpha$-Linolenic Acid on Colon Tumor Incidence, Plasma Thromboxane B2 Level and Fatty Acid Profile of Colonic Mucosal Lipids in Chemical Carcinogen-Treated Rats

  • Park Hyun Suh
    • Journal of Nutrition and Health
    • /
    • v.26 no.7
    • /
    • pp.829-838
    • /
    • 1993
  • This study was designed to compare the effect of different dietary fats on the incidence of colorectal tumor, the level of plasma thromboxane B2(TXB2) and fatty acid profiles of platelet and colonic mucosal lipids in N - methyl - N - nitro - N - nitrosoguanidine(MNNG) - treated rats. Male Sprague Dawley rats, at 8 weeks old, were divided into 2 groups and infused intrarectally with saline(control group) or with 2mg MNNG(carcinogen-treated group) twice a week for 3 weeks. Each group was again divided into 4 groups and fed one of four diets(BT, CO, PO, FO) containing dietary fat at 9%(w/w) level for 37 weeks, Dietary fats were beef tallow(7.2%)+corn oil(1.8%) for BT, corn oil(9.0%) for CO, perilla oil(9.0%) for PO, fish oil (6.5%)+corn oil (2.5%) for FO diets. MNNG-treated rats had colonic tumor, while no tumors(adenocarcinoma and adenoma) than others. Tumor sizes in BT-MNNG rats ranged from 2mm papillary form to 15mm of polypoid. However, the size of tumors in PO-MNNG or FO-MNNG rats could not be measured by gross examination. BT-MNNG and CO-MNNG groups were higher in the level of plasma TXB2 and the ratio of c20 : 4/c20 :5 platelet. PO-MNNG groups were lower in the ratio of c20 : 4/c20 : 5(p<0.05) in fatty acid of colonic mucosal lipids suggesting that perilla oil and fish oil could reduce the level of PGE2 and TXB2 by modifying its precursor content and restrain tumor promotion in colon. Effect of perilla oil rich in $\alpha$-linolenic acid on colon carcinogenesis was similar to that of fish oil and thus perilla oil could have a protective effect against colon cancer possibly by inhibiting the production of arachidonic acid metabolite.

  • PDF

Effects of Dietary Fats on Plasma Lipids and the Level of Lipid Peroxidation and Antioxidant Enzymes in Rats Treated with Dimethylhydrazing (Dimethylhydrazine을 투여한 쥐에서 식이 지방이 혈장 지질 조성과 조직의 과산화물형성 및 항산화효소 수준에 미치는 영향)

  • 박현서
    • Journal of Nutrition and Health
    • /
    • v.29 no.2
    • /
    • pp.232-241
    • /
    • 1996
  • This study was designed to compare the effect of different dietary fats on plasma lipids, the degree of lipid peroxidation and the activity of antioxidant enzymes in RBC and liver rats treated with or wighout 1, 2-dimethylhydrazing (DMH). Male Sprague Dawley rats, at 7 weeks-old, were divided into control and DMH-treated grous, and each group was again subdivided into four were perilla oil (PO), blend fat (BF) containing ten different kinds of dietary oil, beef tallow (BT), corn oil (CO). At the same time, each rat was injected intramusculary with saline(for control) or DMH twice a week for 6 weeks to give total dose of 180 mg/kg body weight. Compared with BT feeding, BF reduced plasma total choesterol level and PO and Co reduced plasma TG levels (p<0.05). DMH injection decreased plasma cholesterol in all dietary groups. However, PO decreased tocopherol levels and increased TBARS levels in RBC compared to BT. The degree of hemolysis in PO group was higher than that of BT group (p<0.05 only in control group. Fatty acid composition of hepatic microsome was reflected by dietary fatty acid profile. The peroxidizability index and TBARS level in hepatic micorsome were significantly increased but tocopherol level was lowered in PO group compared to BT group. Activites of superoxide dismutase and glutathione peroxidase in RBC and hepatic cytosol were not influenced y dietary fats and DMH treatment(p<0.05). Overall, perilla oil rich in $\omega$3 $\alpha$-linolenic acid could be a very important dietary source in reducing plasma lipids and blend fat was also good dietary oil mixture in reducing plasma cholesterol. However, the degree of lipid peroxidation was greater in tissue by perilla oil feeding and it is very difficult to use only perilla oil as oil source for meal preparation, so that it could be suggested to use more perilla oil and fish to give an equal effect of blend fat in order to reduce the risk factors against cardiovascular disease.

  • PDF

Effect of Dietary Fat and Oils on Serum Lipid Status and Fatty Acid Composition in Tissues of Rat (식이지방이 흰쥐의 혈청 지질상태 및 조직 지방산분포에 미치는 영향)

  • Im, Jung-Gyo;Cho, Sung-Hee
    • Journal of Nutrition and Health
    • /
    • v.16 no.1
    • /
    • pp.10-20
    • /
    • 1983
  • In order to establish tissue lipid status in animal on feeding of various dietary fat and oils, each group of rats was fed a semisynthetic diet containing 10%(w/w) mackerel oil (MO), eel oil (EO), soybean oil (SO), rapeseed oil (RO) or beef tallow (BT) for 1, 2 and 4 weeks, After each feeding period, levels of cholesterol, triglyceride and phospholipid were measured in serum. Fatty acid ${\leftarrow}$ composition was also investigated in serum and tissue lipids. Levels of total serum cholesterol were lower but HDL-cholesterol were higher in fish oil groups, which resulted in significantly higher ratio of HDL to total cholesterol in the fish oil groups. Fish oil groups, in general, also had lower levels of serum triglyceride and phospholipid than other groups, but S0 group maintained as low phospholipid levrl as fish oil groups. Fatty acid composition of dietary fat was reflected in all the tissues investigated but with varying degrees. Very long chain fatty acids, specific components exclusively found in fish oils were most well reflected in liver and relatively well in serum, whereas linoleic acid and erucic acid of SO and RO in the diet were better shown up in heart and adipose tissue. It attracted a particular attention that major proportions of long chain monoenoic acids $(C_{22:1})$ occurring both in MO and RO were detected separately in liver and heart plus adipose tissue, the result of which strongly indicates that there is a significant difference in metabolism between isomers $(C_{22:1}\;w\;11\;and\;C_{22:1}\;w\;9,\;respectively)$. It is suggested from this study that differences in lipid status as well as in the levels of serum lipids result from uniqueness in metabolism of each different fatty acid and give rise to distinguishable change in serum lipoprotein pattern, followed by diet with different fat sources.

  • PDF

Effect of Different Dietary Fats on Colonic Epithelial Cell Phospholipid and Phosphatidyl Inositol Composition in DMH-treated Rats (서로 다른 종류의 식이지방이 1,2-Dimethylhydrazine으로 처리한 쥐의 대장점막 인지질 및 Phosphatidyl Inolsitol의 지방산조성에 미치는 영향)

  • 김채종;남정혜
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 1996
  • The study was designed to observe the effects of different dietary fat consumed in Korea with those of three other fats on colonic epithelial cell phospholipid and phosphatidyl inositol composition, which were known as biomarker for colon cancer. Male Sprague Dawley rats, at 7 weeks of age, were divided into control and 1,2-dimethylhydrazine (DMH) -treated group that was again subdivided into four groups. The experimental diets contained one of four dietary fats at 15%(w/w) level, those were, blend fat(BF), beef tallow(BT), corn oil (CO) or perilla oil (PO) At the same time, each rat was injected nth saline for control group or DMH twice a week for 6 weeks to five total dose of 180 mg/kg body weight. Dietary fatty acid composition influenced the fatty acid compositions of tissues. Proportions of C18:2 colonic mucosal phospholipid well reflected dietary level of C18:2 showing in decending CO>BF>PO> BT. The percentage of C20:4 in phospholipid was the higher in CO and BT groups and the lowest in PO groups. Incorporation of -linolenic acid in colonic mucosal lipid In perilla oil group was negatively correlated to the content of C20:4. Therefore, $\omega$3-linolenic acid rich in perilla oil could be a very important dietary source in controlling arachidonic acid level in colon epithelial cell. Therefore it could be recommend to use more perilla oil in meal preparation to reduce the risk factor against colon cancer.

  • PDF

Determination of the Authenticity of Dairy Products on the Basis of Fatty Acids and Triacylglycerols Content using GC Analysis

  • Park, Jung-Min;Kim, Na-Kyeong;Yang, Cheul-Young;Moon, Kyong-Whan;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.316-324
    • /
    • 2014
  • Milk fat is an important food component, and plays a significant role in the economics, functional nutrition, and chemical properties of dairy products. Dairy products also contain nutritional resources and essential fatty acids (FAs). Because of the increasing demand for dairy products, milk fat is a common target in economic fraud. Specifically, milk fat is often replaced with cheaper or readily available vegetable oils or animal fats. In this study, a method for the discrimination of milk fat was developed, using FAs profiles, and triacylglycerols (TGs) profiles. A total of 11 samples were evaluated: four milk fats (MK), four vegetable oils (VG), two pork lards (PL), and one beef tallow (BT). Gas chromathgraphy analysis were performed, to monitor the FAs content and TGs composition in MK, VG, PL, and BT. The result showed that qualitative determination of the MK of samples adulterated with different vegetable oils and animal fats was possible by a visual comparision of FAs, using C14:0, C16:0, C18:1n9c, C18:0, and C18:2n6c, and of TGs, using C36, C38, C40, C50, C52, and C54 profiles. Overall, the objective of this study was to evaluate the potential of the use of FAs and TGs in the detection of adulterated milk fat, and accordingly characterize the samples by the adulterant oil source, and level of adulteration. Also, based on this preliminary investigation, the usefulness of this approach could be tested for other oils in the future.

Acanthopanax senticosus Extract Prepared from Cultured Cells Improves Lipid Parameters in Rats Fed with a High Fat Diet

  • Cha, Youn-Soo;Soh, Ju-Ryoun;Kim, Jae-Whune
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.40-45
    • /
    • 2003
  • Acanthopanax senticosus was grown by a novel, proprietary method, of culturing isolated cells in a bioreactor. An extract from the cells was evaluated for its effect on lipid metabolism in rats fed a high fat diet. Male Sprague-Dawley rats (n=6) were fed either an AIN-76 diet (control, NDCon), control diet plus Acanthopanax senticosus extract (ND+Ex), a modified AIN-76 diet supplemented with 20% beef tallow (high fat, HFCon), or a high fat diet plus Acanthopanax senticosus extract (HF+Ex), for 5weeks. Body weight gain was significantly higher in the HFCon group than the NDCon group. Feed consumption was significantly lower, but energy intake higher, in the groups fed high fat diets compared with the groups fed control diets. Serum HDL-cholesterol concentrations were significantly increased but serum LDL-cholesterol concentrations were decreased in the groups fed the Acanthopanax senticosus extract. Abdominal fat accumulation and serum leptin levels were significantly higher in the HFCon group than the other groups. Carnitine palmitoyltransferase-I (CPT-I) mRNA levels were increased in the groups fed Acanthopanx senticosus extract. These results suggest that supplementation of cell cultured Acanthopanax senticosus extract regulates CPT-I mRNA levels in liver and has an effect on the normalization of lipids in rats fed a high fat diet.

Effects of Different Dietary Oils on Hepatic Mitochondrial Lipid Composition, Adenine Nucletide Translocase and ATPase Activities in Carcinogen Treated Rats (지방산 조성이 다른 식이지방이 발암물질을 투여한 쥐의 간 미토콘드리아 지질조성과 Adenine Nucleotide Translocase 및 ATPase 활성도에 미치는 영향)

  • 이미숙
    • Journal of Nutrition and Health
    • /
    • v.26 no.5
    • /
    • pp.532-546
    • /
    • 1993
  • This study was done to investigate the effects of different dietary oils on hepatic mitochondrial lipid compositon, adenine nucleotide translocase(AdNT) and ATPase activities in carcinogen treated rats. Sixty male Sprague-Dawley rats, weighing 50∼60g, were fed three different types of dietary oil, beef tallow(BT), corn oil(CO) and sardine oil(SO) at 15% by weight for 14 weeks. Three weeks after feeding rats were intraperitoneally injected with a single dose of diethylnitrosamine(200mg/Kg BW). After five weeks rate fed 0.02% acetylaminofluorene contating diet for 6 weeks, and after seven weeks 0.05% phenobarbital containing diet for 7 weeks. At 14th week, rats were sacrificed and hepatic mitochondrial lipid composition, AdNT and ATPase activities were determined. Percent liver weight per body weight was significantly by carcinogen treatment. Analysis of mitochondrial lipid composition showed that body cholesterol and phospholipid contents were not affected by dietary oils but significantly increased by carcinogen treatment. Individual phospholipid composition as well as phosphatidyl ethanolamine/phosphatidyl choline ratio were altered by either dietary oils or carcinogen treatment. Fatty acid composition was changed by dietary oils but not much by carcinogen treatment. AdNT activity was affected by dietary oils in only carcinogen treated groups. ATPase activity was affected by dietary oils in only carcinogen nontreated groups. These data indicate that both dietary oils and caricinogen treatment can change mitochondrial lipid composition and thereby change AdNT and ATPase activities. Particularly effects of carcinogen treatment on cholesterol/phopholipid ratio, phospholipid compositon and ATPase activity were different among dietary oil groups. Therefore it is suggested that different dietary oils can somewhat modulate the changes of mitochnodrial lipid composition and membrane bound enzyme activites during hepatocarcinogenesis.

  • PDF

Effects of Dietary Peroxidizability Index Values on Hepatic TBARS and Antioxidant Enzyme Activity in 7,12-dimethylbenz[$\alpha$]anthracene-treated Rats

  • Kang Min Jeong;Shin Myoung Suk;Park Tung Nan;Lee Sang Sun
    • Nutritional Sciences
    • /
    • v.9 no.1
    • /
    • pp.14-19
    • /
    • 2006
  • Breast cancer may be the consequence of free radical damage, which is partially caused by the excessive intake of dietary fat and imbalances in antioxidant scavenger system;. In this experiment, we examined! the effects of dietary peroxidizability index (PI) values on hepatic thiobmbituric acid reaction substances (TBARS) and antioxidant enzyme activities in rats treated with 7,12-dimethylbenz[$\alpha$]anthracene (DMBA). Female Sprague-Dawley rats were used and 7,12-DMBA (20 mg/kg body weight) was gastrically intubated at seven weeks of age in order to induce mammary tumors (MT). The levels of dietary PI were 36, 81, 126 and 217 (LPI, MLPI, MHPI and HPI), while dietary polyunsaturated/saturated fatty acids ratio was maintained at the same level (1.0). Fat used in the experiment was mixed with soybean oil, com oil, palm oil, perilla oil, sesame oil, fish oil, and beef tallow. Experimental diets were given for the following 20 weeks. We measured tumor numbers and weights, and then assayed the hepatic TBARS levels and antioxidant enzyme activities such as superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione-S-transferase (GST) and glutathione reductase (GR). The incidence of Mr was the lowest in the MHPI group. The hepatic TBARS level was significantly raised with increasing dietary PI value. The hepatic SOD and GR activities were differed significantly by dietary PI value. The hepatic SOD activity was negatively correlated with dietary PI value and GR activity was the highest in the rats fed the MHPI diet. When the dietary P/S ratio is kept at 1.0, adequate dietary PI value (PI value of 126) may reduce the incidence and growth of Mr, but this benefit may be lost with higher dietary PI value. These results suggest that the awareness of dietary PI values may help to decrease breast cancer incidence and growth.