• 제목/요약/키워드: tall

검색결과 1,920건 처리시간 0.035초

사회연결망 분석을 활용한 고속도로 유휴부지의 물류센터 활용 방안에 관한 연구 (Research on the Use of Logistics Centers in Idle site on Highway Using Social Network Analysis)

  • 공인택;신광섭
    • 한국빅데이터학회지
    • /
    • 제6권1호
    • /
    • pp.1-12
    • /
    • 2021
  • 모바일 기반 온라인 쇼핑의 급성장과 COVID-19로 인해 시작된 비대면 비즈니스의 성장은 택배와 같은 물류 서비스 수요를 폭발적인 증가를 이끌어냈다. 급격하게 성장한 수요에 대응하기 위해 대부분의 물류·유통기업들은 도심 내 풀필먼트 센터 구축을 통한 고객 서비스 수준 향상을 위해 노력하고 있다. 그러나, 높은 지가와 교통 체증 등과 같은 사회적 요인에 의해 도심 내 풀필먼트 센터를 확보하는 데 큰 어려움을 겪고 있다. 본 연구에서는 향후 고속도로에 스마트톨링 서비스가 전면 확대됨에 따라 유휴부지로 전환될 요금소 부지를 공유물류센터로 전환하기 위한 후보지 선정 방안을 제시한다. 이를 위해 사회연결망 분석을 통해 각 후보지들의 중심성을 분석하였으며, 중심성 평가의 특성에 따른 결과의 해석을 위한 네트워크 구조를 거리기반과 시간기반의 두 가지 방법으로 재설계하여 평가하였다. 누적된 중요도를 기준으로 적정 후보지 군을 선택하는데 활용될 수 있을 것이다.

식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 - (Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area -)

  • 이한경;이채연;김규랑;조창범
    • 대기
    • /
    • 제29권2호
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

스포츠 멀티 인공환경 시스템을 위한 다중압력 일체형 챔버의 구조안전성 평가 (Structural Safety Evaluation of Multi-Pressure Integrated Chamber for Sport-Multi-Artificial Environment System)

  • 이준호;강상모;채재익
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.324-328
    • /
    • 2019
  • 스포츠를 위해 제공되고 사용되는 몇 가지 전용 챔버가 공급되어 사용되고 있지만 스포츠 멀티 환경을 동시에 제공할 수 있는 다기능 올인원 챔버는 개발되지 않았다. 본 연구에서는 스포츠 다중 인공 환경 시스템에 사용할 수 있는 다중압력 (양 / 대기 / 음압) 일체형 챔버를 설계하였다. 키가 큰 사용자를 위해 공간을 넓힌 새로운 챔버 디자인을 제시 한 다음 최대 응력과 구조적 안전성검토를 통하여 챔버의 구조해석을 수행하였다. 목표로 하는 허용 압력 조건하에서 쉘과 출입구의 접합부에서 최대 응력이 발생했으며, 챔버 재료의 허용응력을 기준으로 하여 구조안전성 평가를 수행하였다. 다중 압력 일체형 챔버에 대하여 구조해석을 수행한 결과 양압과 음압 조건에 대한 최대 응력이 챔버 재료의 허용응력 보다 훨씬 작은 값이 발생되었으며, 구조안전성 평가 결과 안전율 2 이상을 만족하여 챔버의 최종 시제품의 설계가 구조적으로 안전하다는 것을 확인하였다.

Progressive Collapse of Steel High-Rise Buildings Exposed to Fire: Current State of Research

  • Jiang, Jian;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.375-387
    • /
    • 2018
  • This paper presents a review on progressive collapse mechanism of steel framed buildings exposed to fire. The influence of load ratios, strength of structural members (beam, column, slab, connection), fire scenarios, bracing systems, fire protections on the collapse mode and collapse time of structures is comprehensively reviewed. It is found that the key influencing factors include load ratio, fire scenario, bracing layout and fire protection. The application of strong beams, high load ratios, multi-compartment fires will lead to global downward collapse which is undesirable. The catenary action in beams and tensile membrane action in slabs contribute to the enhancement of structural collapse resistance, leading to a ductile collapse mechanism. It is recommended to increase the reinforcement ratio in the sagging and hogging region of slabs to not only enhance the tensile membrane action in the slab, but to prevent the failure of beam-to-column connections. It is also found that a frame may collapse in the cooling phase of compartment fires or under travelling fires. This is because that the steel members may experience maximum temperatures and maximum displacements under these two fire scenarios. An edge bay fire is more prone to induce the collapse of structures than a central bay fire. The progressive collapse of buildings can be effectively prevented by using bracing systems and fire protections. A combination of horizontal and vertical bracing systems as well as increasing the strength and stiffness of bracing members is recommended to enhance the collapse resistance. A protected frame dose not collapse immediately after the local failure but experiences a relatively long withstanding period of at least 60 mins. It is suggested to use three-dimensional models for accurate predictions of whether, when and how a structure collapses under various fire scenarios.

Mushroom skeleton to create rocking motion in low-rise steel buildings to improve their seismic performance

  • Mahdavi, Vahid;Hosseini, Mahmood;Gharighoran, Alireza
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.639-654
    • /
    • 2018
  • Rocking motion have been used for achieving the 'resilient buildings' against earthquakes in recent studies. Low-rise buildings, unlike the tall ones, because of their small aspect ratio tend to slide rather than move in rocking mode. However, since rocking is more effective in seismic response reduction than sliding, it is desired to create rocking motion in low-rise buildings too. One way for this purpose is making the building's structure rock on its internal bay(s) by reducing the number of bays at the lower part of the building's skeleton, giving it a mushroom form. In this study 'mushroom skeleton' has been used for creating multi-story rocking regular steel buildings with square plan to rock on its one-by-one bay central lowest story. To show if this idea is effective, a set of mushroom buildings have been considered, and their seismic responses have been compared with those of their conventional counterparts, designed based on a conventional code. Also, a set of similar buildings with skeleton stronger than code requirement, to have immediate occupancy (IO) performance level, have been considered for comparison. Seismic responses, obtained by nonlinear time history analyses, using scaled three-dimensional accelerograms of selected earthquakes, show that by using appropriate 'mushroom skeleton' the seismic performance of buildings is upgraded to mostly IO level, while all of the conventional buildings experience collapse prevention (CP) level or beyond. The strong-skeleton buildings mostly present IO performance level as well, however, their base shear and absolute acceleration responses are much higher than the mushroom buildings.

Identification of a novel heterozygous mutation of ACAN in a Korean family with proportionate short stature

  • Kim, Yoo-Mi;Cheon, Chong Kun;Lim, Han Hyuk;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.102-106
    • /
    • 2018
  • Aggrecan is a proteoglycan in the extracellular matrix of growth plate and cartilaginous tissues. Aggrecanopathy has been reported as a genetic cause not only for severe skeletal dysplasia but also for autosomal dominant short stature with normal to advanced bone age. We report a novel heterozygous mutation of ACAN in a Korean family with proportionate short stature identified through targeted exome sequencing. We present a girl of 4 years and 9 months with a family history of short stature over three generations. The paternal grandmother is 143 cm tall (-3.8 as a Korean standard deviation score [SDS]), the father 155 cm (-3.4 SDS), and the index case 96.2 cm (-2.9 SDS). Evaluation for short stature showed normal growth hormone (GH) peaks in the GH provocation test and a mild delayed bone age for chronological age. This subject had clinical characteristics including a triangular face, flat nasal bridge, prognathia, blue sclerae, and brittle teeth. The targeted exome sequencing was applied to detect autosomal dominant growth palate disorder. The novel variant c.910G>A (p.Asp304Asn) in ACAN was identified and this variant was found in the subject's father using Sanger sequencing. This is the first case of Korean familial short stature due to ACAN mutation. ACAN should be considered for proportionate idiopathic short stature, especially in cases of familial short stature.

트윈 빌딩의 적합 직교 분해 기법을 이용한 풍하중 및 풍응답 평가 (Evaluating Wind Load and Wind-induced Response of a Twin Building using Proper Orthogonal Decomposition)

  • 김법렬
    • 한국전산구조공학회논문집
    • /
    • 제31권6호
    • /
    • pp.309-314
    • /
    • 2018
  • 트윈 빌딩의 풍하중의 특성과 구조적 특성은 일반 고층건물보다 복잡하다. 이러한 특성을 조사하기 위해서 풍동실험을 통해서 트윈 빌딩의 풍압을 계측하였다. 계측된 데이터와 적합 직교 분해 기법을 이용하여 풍압의 패턴을 파악하였다. 1차 모드에서는 채널링 효과가 2차 모드에서는 와류 효과가 나타났다. 또한, 두 빌딩의 하중의 상관관계를 파악하였는데, 풍 방향 하중은 양의 상관관계를 가지며, 풍 직각 방향의 하중은 명확한 상관관계가 나타나지 않았다. 이러한 상관관계는 횡 방향 변위에도 영향을 미쳤다. 양의 상관관계를 가지면 트윈 빌딩을 연결하는 구조부재의 영향이 적게 작용한 반면에 음의 상관관계를 가지면 연결 구조부재의 영향이 횡 방향의 변위를 줄이는데 큰 영향을 미치게 되었다.

바닥 격막을 고려한 코어 및 오프셋 아웃리거 구조의 최적위치에 대한 전단벽 강성의 영향 (Effect of Shear Wall Stiffness on Optimal Location of Core and Offset Outrigger Considering Floor Diaphragm)

  • 김형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.37-47
    • /
    • 2019
  • 본 논문은 바닥 격막을 고려한 코어 및 오프셋 아웃리거 구조의 최적위치를 파악하기 위하여 70층 규모의 초고층 아웃리거 건물을 대상으로 MIDAS-Gen을 이용하여 구조설계를 실시하였다. 그리고 본 해석연구의 주요 변수는 슬래브의 강성, 전단벽의 강성, 아웃리거의 평면상 위치이다. 또한 본 해석결과에 근거하여 슬래브의 강성과 전단벽의 강성이 바닥 격막을 고려한 코어 및 오프셋 아웃리거 구조의 최적 위치에 미치는 영향을 분석하였다. 본 해석연구의 결과에서는 슬래브의 강성, 전단벽의 강성, 아웃리거의 평면상 위치가 초고층 아웃리거 구조시스템의 최적위치에 어떤 영향을 주는 지를 분석하여 나타났다. 그리고 본 논문의 결과는 초고층 아웃리거 구조시스템의 최적위치를 조사하는데 필요한 구조공학자료를 얻는데 도움이 된다고 사료된다.

Will CFD ever Replace Wind Tunnels for Building Wind Simulations?

  • Phillips, Duncan A.;Soligo, Michael J.
    • 국제초고층학회논문집
    • /
    • 제8권2호
    • /
    • pp.107-116
    • /
    • 2019
  • The use of computational fluid dynamics (CFD) is becoming an increasingly popular means to model wind flows in and around buildings. The first published application of CFD to both indoor and outdoor building airflows was in the 1970's. Since then, CFD usage has expanded to include different aspects of building design. Wind tunnel testing (WTT) on buildings for wind loads goes back as far as 1908. Gustave Eiffel built a pair of wind tunnels in 1908 and 1912. Using these he published wind loads on an aircraft hangar in 1919 as cited in Hoerner (1965 - page 74). The second of these wind tunnels is still in use today for tests including building design ($Damljanovi{\acute{c}}$, 2012). The Empire State Building was tested in 1933 in smooth flow - see Baskaran (1993). The World Trade Center Twin Towers in New York City were wind tunnel tested in the mid-sixties for both wind loads, at Colorado State University (CSU) and the [US] National Physical Laboratory (NPL), as well as pedestrian level winds (PLW) at the University of Western Ontario (UWO) - Baskaran (1993). Since then, the understanding of the planetary boundary layer, recognition of the structures of turbulent wakes, instrumentation, methodologies and analysis have been continuously refined. There is a drive to replace WTT with computational methods, with the rationale that CFD is quicker, less expensive and gives more information and control to the architects. However, there is little information available to building owners and architects on the limitations of CFD for flows around buildings and communities. Hence building owners, developers, engineers and architects are not aware of the risks they incur by using CFD for different studies, traditionally conducted using wind tunnels. This paper will explain what needs to happen for CFD to replace wind tunnels. Ultimately, we anticipate the reader will come to the same conclusion that we have drawn: both WTT and CFD will continue to play important roles in building and infrastructure design. The most pressing challenge for the design and engineering community is to understand the strengths and limitations of each tool so that they can leverage and exploit the benefits that each offers while adhering to our moral and professional obligation to hold paramount the safety, health, and welfare of the public.

비정형 초고층건물의 코어 특성에 관한 연구 (A Study on the Core Characteristics of Irregular-Shaped High-rise Buildings)

  • 장인선;임자은;박상민
    • 대한건축학회논문집:계획계
    • /
    • 제35권11호
    • /
    • pp.13-24
    • /
    • 2019
  • The history of tall buildings begins in 1853with the development of elevators. After the Industrial Revolution of the 18th century, the development of high-rise buildings will be carried out in earnest as a means to efficiently use the limited land of cities. The development, which began around Chicago, extended over a long period of time to Asia, maximizing the high competition. However, in the 2000s, not only was it high due to the development of construction and digital technology, but it also became competitive in eco-friendly elements and unstructured forms. High-rise building plans that have gained elemental and morphological diversity are completed by the interrelationships of various plans. Among them, it is important that the core plan has a reasonable approach from the initial planning stage as the basis for the vertical copper plan linking vertically-intensive functions. The cores should be designed to be clear and adequately responsive to changes in the shape of the building. This study aims to provide designers with a reasonable understanding of core planning by identifying core characteristics of irregular high-rise. In particular, we want to analyze the shape of the ground layer core and the relationship between the area and components of the ground layer core. The analysis results are as follows, classified according to the type or use of the building. Of the atypical forms composed of double bending, the TAPER-Curve and TWIST forms are the most distributed, and the plane and core shapes of the ground floor are the most commonly used. Based on the analysis of the validity of the ground floor cores by shape of the cores, the most commonly used forms for core shapes in the planning of the atypical high-rise are square, circular and Oval, and the most efficient oval cores and relatively inefficient ones when planned.