• Title/Summary/Keyword: tactile interface

Search Result 66, Processing Time 0.024 seconds

A Conversational Interactive Tactile Map for the Visually Impaired (시각장애인의 길 탐색을 위한 대화형 인터랙티브 촉각 지도 개발)

  • Lee, Yerin;Lee, Dongmyeong;Quero, Luis Cavazos;Bartolome, Jorge Iranzo;Cho, Jundong;Lee, Sangwon
    • Science of Emotion and Sensibility
    • /
    • v.23 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • Visually impaired people use tactile maps to get spatial information about their surrounding environment, find their way, and improve their independent mobility. However, classical tactile maps that make use of braille to describe the location within the map have several limitations, such as the lack of information due to constraints on space and limited feedback possibilities. This study describes the development of a new multi-modal interactive tactile map interface that addresses the challenges of tactile maps to improve the usability and independence of visually impaired people when using tactile maps. This interface adds touch gesture recognition to the surface of tactile maps and enables the users to verbally interact with a voice agent to receive feedback and information about navigation routes and points of interest. A low-cost prototype was developed to conduct usability tests that evaluated the interface through a survey and interview given to blind participants after using the prototype. The test results show that this interactive tactile map prototype provides improved usability for people over traditional tactile maps that use braille only. Participants reported that it was easier to find the starting point and points of interest they wished to navigate to with the prototype. Also, it improved self-reported independence and confidence compared with traditional tactile maps. Future work includes further development of the mobility solution based on the feedback received and an extensive quantitative study.

Tactile Response Characteristics of Haptic Displays based on Magneto-Rheological Fluids (MR 유체를 이용한 햅틱 디스플레이의 질감 반응 특성)

  • Jang, Min-Gyu;Choi, Jea-Young;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.26 no.3
    • /
    • pp.184-189
    • /
    • 2010
  • In this paper, tactile response characteristics in medical haptic interface are investigated to characterize the feeling of contact between the finger skin and the organic tissue when a finger is dragged over tissue. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, curvature and friction. Thus, the tactile display provides the surface information of organic tissue to the surgeon using different actuating mechanisms ranging from the conventional mechanical motor to the smart material actuators. In order to investigate the compliance feeling of human finger's touch, vertical force responses of the tactile display under the various magnetic fields have been assessed. Also, frictional resistive force responses of the tactile display are investigated to simulate the action of finger's dragging. From the results, different tactile feelings are observed as the applied magnetic field is varied and arrayed magnetic poles combinations. This research gives a smart technology of tactile displaying.

Tactile Transceiver for Fingertip Motion Recognition and Texture Generation (손끝 움직임 인식과 질감 표현이 가능한 촉각정보 입출력장치)

  • Youn, Sechan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.545-550
    • /
    • 2013
  • We present a tactile information transceiver using a friction-tunable slider-pad. While previous tactile information devices were focused on either input or output functions, the present device offers lateral position/vertical direction detection and texture expression. In characterizing the tactile input performance, we measured the capacitance change due to the displacement of the slider-pad. The measured difference for a z-axis click was 0.146 nF/$40{\mu}m$ when the x-y axis navigation showed 0.09 nF/$750{\mu}m$ difference. In characterizing the texture expression, we measured the lateral force due to a normal load. We applied a voltage between parallel electrodes to induce electrostatic attraction in DC and AC voltages. We measured the friction under identical fingertip action conditions, and obtained friction in the range of 32-152 mN and lateral vibration in the force range of 128.1 mN at 60 V, 2 Hz. The proposed device can be applied to integrated tactile interface devices for mobile appliances.

A Study on Tactile and Gestural Controls of Driver Interfaces for In-Vehicle Systems (차량내 시스템에 대한 접촉 및 제스처 방식의 운전자 인터페이스에 관한 연구)

  • Shim, Ji-Sung;Lee, Sang Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • Traditional tactile controls that include push buttons and rotary switches may cause significant visual and biomechanical distractions if they are located away from the driver's line of sight and hand position, for example, on the central console. Gestural controls, as an alternative to traditional controls, are natural and can reduce visual distractions; however, their types and numbers are limited and have no feedback. To overcome the problems, a driver interface combining gestures and visual feedback with a head-up display has been proposed recently. In this paper, we investigated the effect of this type of interface in terms of driving performance measures. Human-in-the-loop experiments were conducted using a driving simulator with the traditional tactile and the new gesture-based interfaces. The experimental results showed that the new interface caused less visual distractions, better gap control between ego and target vehicles, and better recognition of road conditions comparing to the traditional one.

A Study on the Increase of Intuitive Play in Web Site - Especially on the Internet Shopping Mall Design using Tactile User Experience (웹사이트에서의 직관적 유희성 증대에 관한 연구 -촉각적 사용자 경험을 활용한 인터넷 쇼핑몰 디자인을 중심으로-)

  • 황선영;서종환
    • Archives of design research
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2003
  • Web sites are needed to approach the lots of ways that increase the user intuitive play over communicating information nowadays. So the stimulus of tactile sense establish it's importance through active study in other fields and we expect great effect to applicate this tactile sense in web site. This study analyzed both the experience for intuition and the increase of intuitive play in web site and investigated the importance of tactile sense. This user experience through the tactile sense not only communicates between designer and user but has the intuitive play for users. So we analyzed the factors of tactile user experience in web site and considered it's application and then applied these factors in internet shopping mail. After that, we analyzed the users'response in the Internet shopping mall using the tactile user experiences through the research.

  • PDF

Wearable Tactile Display Based on Soft Actuator (유연한 구동기를 이용한 착용 가능한 촉각 제시 장치 개발)

  • Koo, Ig-Mo;Jung, Kwang-Mok;Park, Jong-Kil;Koo, Ja-Choon;Lee, Young-Kwan;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.89-101
    • /
    • 2006
  • Tactile sensation is one of the most important sensory functions for human perception of objects. Recently, there have been many technical challenges in the field of tactile display as well as tactile sensing. In this paper, we propose an innovative tactile display device based on soft actuator technology with ElectroActive Polymer(EAP). This device offers advantageous features over existing devices with respect to intrinsic flexibility, softness, ease of fabrication and miniaturization, high power density, and cost effectiveness. In particular, it can be adapted to various geometric configurations because it possesses structural flexibility, so it can be worn on any part of the human body such as finger, palm, and arm etc. It can be extensively applied as a wearable tactile display, a Braille device for the visually disabled, and a human interface in the future. A new design of the flexible actuator is proposed and its basic operational principles are discussed. In addition, a wearable tactile display device with $4{\times}5$ actuator array(20 actuator cells) is developed and its effectiveness is confirmed.

  • PDF

Multi-modal Sense based Interface for Augmented Reality in Table Top Display (테이블 탑 디스플레이 기반 증강현실 구현을 위한 다중 감각 지원 인터페이스)

  • Jeong, Jong-Mun;Yang, Hyung-Jeong;Kim, Sun-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.708-716
    • /
    • 2009
  • Applications which are implemented on Table Top Display are controlled by hands, so that they support an intuitive interface to users. Users feel the real sense when they interact on the virtual scene in Table Top Display. However, most of conventional augmented reality applications on Table Top Display satisfy only visual sense. In this paper, we propose an interface that supports multi-modal sense in that tactile sense is utilized for augment reality by vibrating a physical control unit when it collides to virtual objects. Users can feel the collision in addition to visual scene. The proposed system facilitates tactile augmented reality through an air hockey game. A physical control unit vibrates when it receives virtual collision data over wireless communication. Since the use of tabletop display environment is extended with a tactile sense based physical unit other than hand, it provides a more intuitive interface.

  • PDF

Realization of Tactile Sense of Virtual Objects Using Neural-Networks (신경 회로망을 이용한 가상물체의 질감학습)

  • Kim, Su-Ho;Jang, Tae-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.263-266
    • /
    • 2003
  • In this paper, we have proposed a realization method of tactile sense of virtual objects using multi-layer Neural Networks(NN). Inputs of the NN are position data of non-rigid objects and outputs of the NN are forces at that time and point. First, the position and forte data are measured from non-rigid objects (a sponge and a balloon) using two PHANToMS, one as a master and the other as a slave manipulator, then the data are used to train a multi-layer Neural Networks whose inputs and outputs are designed to represent tactile information. The trained Neural Networks is used to regenerate the tactile sense on the virtual objects graphically made by a computer, and one can feel a quite similar sense of touch by using the system while touching the virtual objects.

  • PDF

Tactile Sensing for Virtual Interaction as a Part of Ubiquitous Game Development (유비쿼터스게임의 상호작용 구성요소 개발을 위한 촉각응용)

  • Lee, Young-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1062-1068
    • /
    • 2007
  • In order to design and develop a ubiquitous game, it is necessary to develop a natural and flexible interface between the real world and the virtual world, based on social and physical context awareness. We design user interface model and the tactile sensing system that performs virtual interaction and collection of the sensor data. It is sensitive so the collected data should be filtered, rearranged and analyzed. This information is quite different from stylus input, keyboard, button or mouse for interaction. We detect kicked 3D force position of a ball, moment of area, moment of inertia and modified ball shape using tactile sensing system and analyzed data. The results demonstrate that the proposed approach is desirable and robust as well as the results can be used realistic actions and reactions considering attack force and to make interesting environments for ubiquitous game.

Finger Mounted Pneumatic Tactile Display and Psychophysical Experiments (손끝 부착 형 공기촉감 제시장치의 개발 및 심리 물리학적 실험)

  • Kim, Yeong-Mi;Oakley, Ian;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.467-473
    • /
    • 2006
  • 가상환경 또는 실제환경에서 정보를 제공하는 햅틱 인터페이스의 필요성이 점점 증가 함에 따라 촉감을 제공 하기 위한 다양한 햅틱 장치가 개발되었고 각 장치의 특성과 성능 평가를 위해 기초적인 정신(심리) 물리학적 연구가 수행 되고 있다. 본 논문에서는 여러 가지 햅틱 인터페이스 중 손가락 끝에 부착하는 형태의 새로운 공기 촉감 제시장치(PTI: Pneumatic Tactile Interface)를 제시하고 이 장치의 유용성을 입증하기 위해 localization rate, 시간 분해능, 길이 분해능, 강도의 세기 등의 심리 물리학적 실험(Psychophysical Experiment) 수행 결과를 제시한다. 공기촉감 시스템은 50개의 출력까지 확장 가능한 공기촉감 하드웨어로 구성 되어있고 손가락 끝에 부착하는 형태로 구성 하기 위해 5*5의 배열의 디스플레이를 제작하였다. 16명의 피실험자가 A, B 두 그룹으로 나뉘어 각각 2가지의 심리물리학 실험을 수행하였다. localization rate의 경우 9개의 다른 자극의 위치를 구별하기 위해 3*3 배열로 구성된 밀집된 디스플레이와 확장된 디스플레이로 측정을 수행하여 각각 58.13%, 85.9%의 localization rate를 얻을 수 있었다. 그리고 100번의 반복 실험을 통해 약 2.6mm의 길이 분해능을 얻을 수 있었고 자극 강도 실험의 경우, 실제의 강도가 세짐에 따라 피 실험 자들이 느끼는 강도의 척도도 증가 하며, 강도가 약해 질수록 피 실험 자들이 느끼는 강도 역시 거의 선형적으로 감소함을 알 수 있었다. 그러나 시간 분해능의 경우에는 시스템을 구성하는 밸브의 성능으로 인해 20ms 이하의 시간 분해능 측정은 제한 되었다. 이러한 심리 물리학 실험을 통하여 개발된 공기촉감 제시장치가 다양한 정보를 전달하는데 충분하다는 결론을 내릴 수 있으며, 제안된 시스템을 사용하는 여러 가지 어플리케이션을 제시하였다.

  • PDF