• Title/Summary/Keyword: tactile fingertip sensor

Search Result 7, Processing Time 0.025 seconds

Development of Myoelectric Hand with Infrared LED-based Tactile Sensor (적외선 소자 기반의 촉각센서를 가진 근전의수 개발)

  • Jeong, Dong-Hyun;Chu, Jun-Uk;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.831-838
    • /
    • 2009
  • This paper proposes an IR (infrared) LED (Light Emitting Diode)-based tactile fingertip sensor that can independently measure the normal and tangential force between the hand and an object. The proposed IR LED-based tactile sensor has several advantages over other technologies, including a low price, small size, and good sensitivity. The design of the first prototype is described and some experiments are conducted to show output characteristics of the proposed sensor. Furthemore, the effectiveness of the proposed sensor is demonstrated through anti-slip control in a multifunction myoelectric hand, called the KNU Hand, which includes several novel mechanisms for improved grasping capabilities. The experimental results show that slippage was avoided by simple force control using feedback on the normal and tangential force from the proposed sensor. Thus, grasping force control was achieved without any slippage or damage to the object.

Development of Anthropomorphic Robot Hand with Tactile Sensor: SKKU Hand II (촉각센서를 갖는 인간형 로봇손의 개발: SKKU Hand II)

  • Choi Byung-June;Lee Sang-Hun;Kang Sung-Chul;Choi Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.594-599
    • /
    • 2006
  • In this paper an anthropomorphic robot hand called SKKU Hand IIl is presented, which has a miniaturized fingertip tactile sensor. The thumb is designed as one part of the palm and multiplies the mobility of the palm. The fingertip tactile sensor, based on polyvinylidene fluoride (PVDF) and pressure variable resistor ink, is physically flexible enough to be deformed into any three-dimensional geometry. In order to detect incipient slip, a PVDF strip is arranged along the direction normal to the surface of the finger of the robot hand. Also, a thin flexible sensor to sense the static force as well as the contact location is fabricated into an arrayed type using pressure variable resistor ink. The driving circuits and the tactile sensing systems for the SKKU Hand II are embedded in the hand. Each driving circuit communicates with others using CAN protocol. SKKU Hand II is manufactured and its feasibility is validated through preliminary experiments.

Nature-Inspired high sensitivity tactile sensor technology (자연모사 고감도 촉각센서 기술)

  • Kim, Tae Wi;Lee, Eun Han;Kang, Daeshik
    • Vacuum Magazine
    • /
    • v.4 no.3
    • /
    • pp.6-11
    • /
    • 2017
  • The tactile sensor of the future robot is becoming a necessity as a sensory organ which can communicate with the person most directly. Recently, the Nature-inspired technology has provided a new direction for the development of these tactile sensors. Here, we review three different nature-inspired tactile sensory system; high sensitivity pressure sensor inspired by beetle wings, highly sensitive strain sensor inspired by the spider's sensory organs, Tactile sensor inspired by human fingertip. These nature-inspired tactile sensors are expected to provide a breakthrough that not only can sensitively measure the pressure, but also delicately recognize the softness and texture of the material just like human.

Polymer Micromachined Flexible Tactile Sensor for Three-Axial Loads Detection

  • Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.130-133
    • /
    • 2010
  • A flexible three-axial tactile sensor was fabricated on Kapton polyimide film using polymer micromachining technology. Nichrome (Ni:Cr = 8:2) strain gauges were positioned on an etched membrane to detect normal and shear loads. The optimal positions of strain gauges were determined through strain distribution from finite element analysis. The sensor was evaluated by applying normal and shear loads from 0 N to 0.8 N using an evaluation system. Sensitivity of the tactile sensor to normal and shear loads was about 206.6 mV/N and 70.1 mV/N, respectively. The sensor showed good linearity, and its determination coefficient ($R^2$) was about 0.982. The developed sensor can be applied in a curved or compliant surface that requires slip detection and flexibility, such as a robotic fingertip.

Development of Fingertip Tactile Sensor for Detecting Normal Force and Slip

  • Choi, Byung-June;Kang, Sung-Chul;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1808-1813
    • /
    • 2005
  • In this paper, we present the finger tip tactile sensor which can detect contact normal force as well as slip. The developed sensor is made of two different materials, such as polyvinylidene fluoride(PVDF) that is known as piezoelectric polymer and pressure variable resistor ink. In order to detect slip to surface of object, a PVDF strip is arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, we developed a tactile sensing system by miniaturizing the charge amplifier, in order to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

  • PDF

Application of Tactile Slippage Sensation Algorithm in Robot Hand Control System

  • Yussof, Hanafiah;Jaffar, Ahmed;Zahari, Nur Ismarrubie;Ohka, Masahiro
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • This paper presents application of a new tactile slippage sensation algorithm in robot hand control system. The optical three-axis tactile sensor is a type of tactile sensor capable of defining normal and shear forces simultaneously. The tactile sensor is mounted on fingertip of robotic hand. Shear force distribution is used to define slippage sensation in the robot hand system. Based on tactile slippage analysis, a new control algorithm was proposed. To improve performance during object handling motions, analysis of slippage direction is conducted. The control algorithm is classified into two phases: grasp-move-release and grasp-twist motions. Detailed explanations of the control algorithm based on the existing robot arm control system are presented. The experiment is conducted using a bottle cap, and the results reveal good performance of the proposed control algorithm to accomplish the proposed object handling motions.

A Study on Design of Flexible Gripper for Unmanned FA (무인 FA를 위한 플렉시블 그리퍼 설계에 관한 연구)

  • Kim, Hyun-Gun;Kim, Gi-Bok;Kim, Tae-Kwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we propose a new approach to design and control a smart gripper of robot system. A control method for flexible grasping a object in partially unknown environment was proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases. The first step is scanning process which two first joints were moved to mid-position of the detected range by a state-variable feedback position controller, after the scanning was finished. The contact force of fingertip was then controlled using the detection sensor of the servo controller for finger joint control. The proposed grasping planning was tested on rectangular bar.