• Title/Summary/Keyword: tactile

Search Result 764, Processing Time 0.025 seconds

Tactile localization Using Whisker Tactile Sensors (수염 촉각 센서를 이용한 물체 위치 판별 그리고 이에 따른 로봇의 상대적 위치 제어 방법)

  • Kim, Dae-Eun;Moeller, Ralf
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1061-1062
    • /
    • 2008
  • Rodents demonstrate an outstanding capability for tactile perceptions using their whiskers. The mechanoreceptors in the whisker follicles are responsive to the deflections or vibrations of the whisker beams. It is believed that the sensor processing can determine the location of an object in touch, that is, the angular position and direction of the object. We designed artificial whiskers modelling the real whiskers and tested tactile localization. The robotic system needs to adjust its position against an object to help the shape recognition. We show a robotic adjustment of position based on tactile localization. The behaviour uses deflection curves of the whisker sensors for every sweep of whiskers and estimates the location of a target object.

  • PDF

Development of Flexible Tactile Sensor Array

  • Kim, Hyungtae;Kwangmok Jung;Lee, Kyungsub;Jaedo Nam;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.6-97
    • /
    • 2002
  • In this paper, we present an arrayed flexible tactile sensor, which can detect contact normal forces as well as positions. The tactile sensor is developed using Polyvinylidene Fluoride (PVDF) that is known as piezoelectric polymer, and the surface electrode is fabricated using silk-screening technique with silver. We develop a charge amplifier in order to amplify the small signal from the sensor, and a fast signal processing unit by using a DSP chip. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In the future, the developed sensor is applied to a dexterous robotic hand...$\textbullet$ Tactile sensing, PVDF, Robot hand

  • PDF

Distributed Flexible Tactile Sensor (분포형 유연촉각센서)

  • 유기호;윤명종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • A flexible tactile sensor away with 8 H 8 tactile elements is designed and fabricated. The material of the sensor is PVDF(polyvinylidene fluoride) film and flexible circuitry is used in the fabrication fur the flexibility of the sensor The experimental results on static and dynamic properties of the sensor are obtained and examined. The signals of a contact pressure to the sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. The processed signals of the sensor outputs are visualized in a personal computer for illustrating the shape and force distribution of a contact object. The reasonable performance for the detection of contact state is verified through sensing examples.

Development of Compliance Emulator System (콤플라이언스 에뮬레이터 시스템의 개발)

  • Park, Chan-Won;Shin, Young-kyun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.351-359
    • /
    • 1999
  • If the tactile sense is introduced to engineering and industries, it may provide more realistic virtual tactile sensing to human and it is possible to develop product that satisfy various consumer's taste. This paper presents a compliance emulator system as a new concept of tactile reproduction simulator which uses magnetic levitation in order to minimize friction and emulates compliance only along the vertical direction. Compliance is one of the important mechanical properties of the object related to tactile sensing of the human. The implemented system equipped with an analog LVDT sensor for a position sensor and employs a PD control with gravity compensation to emulate the specified compliance. To compensate the limited range of the system, the method of attaching the spring with various magnitude of stiffness to the system is adopted and its preliminary test is performed to confirm the validity of the method.

  • PDF

Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature (힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계)

  • 김종호;이상현;권휴상;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

Compliant Ultrasound Proximity Sensor for the Safe Operation of Human Friendly Robots Integrated with Tactile Sensing Capability

  • Cho, Il-Joo;Lee, Hyung-Kew;Chang, Sun-Il;Yoon, Euisik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.310-316
    • /
    • 2017
  • The robot proximity and tactile sensors can be categorized into two groups: grip sensors and safety sensors. They have different performance requirements. The safety sensor should have long proximity range and fast response in order to secure enough response time before colliding with ambient objects. As for the tactile sensing function, the safety sensor need to be fast and compliant to mitigate the impact from a collision. In order to meet these requirements, we proposed and demonstrated a compliant integrated safety sensor suitable to human-friendly robots. An ultrasonic proximity sensor and a piezoelectric tactile sensor made of PVDF films have been integrated in a compliant PDMS structure. The implemented sensor demonstrated the maximum proximity range of 35 cm. The directional tolerance for 30 cm detection range was about ${\pm}15^{\circ}$ from the normal axis. The integrated PVDF tactile sensor was able to detect various impacts of up to 20 N in a controlled experimental setup.

Design and Performance Evaluation of Tactile Device Using MR Fluid (MR 유체를 이용한 촉감구현장치의 설계 및 성능 평가)

  • Kim, Jin-Kyu;Oh, Jong-Seok;Lee, Snag-Rock;Han, Young-Min;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1220-1226
    • /
    • 2012
  • This paper proposes a novel type of tactile device utilizing magnetorheological(MR) fluid which can be applicable for haptic master of minimally invasive surgery(MIS) robotic system. The salient feature of the controllability of rheological properties by the intensity of the magnetic field(or current) makes this potential candidate of the tactile device. As a first step, an appropriate size of the tactile device is designed and manufactured via magnetic analysis. Secondly, in order to determine proper input magnetic field the repulsive forces of the real body parts such as hand and neck are measured. Subsequently, the repulsive forces of the tactile device are measured by dividing 5 areas. The final step of this work is to obtain desired force in real implementation. Thus, in order to demonstrate this goal a neuro-fuzzy logic is applied to get the desired repulsive force and the error between the desired and actual force is evaluated.

Development of Braille Display Using Dielectric Elastomer (고분자 유전체를 이용한 시각 장애인용 점자 출력기 개발)

  • 이상원;구익모;정광목;이성일;최후곤;전재욱;남재도;최혁렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.961-970
    • /
    • 2004
  • Tactile sensation is one of the most important sensory functions along with the auditory sensation for the visually impaired since it replaces the visual one of the persons with sight. In this paper, we present a tactile display device as a dynamic Braille display that is the unique tool f3r exchanging information among them. The tactile cell of the Braille display proposed is based on the dielectric elastomer, which is one of the electroactive polymers. It has advantageous features over the existing ones with respect to intrinsic softness, ease of fabrication, cost effectiveness and miniaturization. We introduce a new idea for actuation as well as additional considerations such as the driving circuit that makes it possible to drive multiple tactile cells in a high speed. Also, we describe the actuating mechanism of the Braille pin in details capable of realizing the enhanced spatial density of the tactile cells. Finally, results of psychophysical experiments are given to evaluate its effectiveness.

The Effects of Visual and Tactile Feedback on Quadriceps Isometric Exercise (시·촉각 되먹임이 넙다리네갈래근 등척성 운동에 미치는 영향)

  • Lee, Su-Young;Jung, Young-Jong
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.27-34
    • /
    • 2001
  • Physical therapists have been using biofeedback training to induce improvements in various circumstances. The purpose of this study was to compare the effects of visual and tactile feedback using electrical stimulation on quadriceps strength. Nineteen women without known impairment of the neuromusculoskeletal system volunteered for this study. Subjects were randomly allocated into three groups: visual feedback, tactile feedback, and control group. The torque of isometric knee extension force was measured. Subjects were asked to exert the maximal isometric contraction force of quadriceps over a 30 second period. The resting period of 10 minutes was given after the maximal isometric contraction to avoid the muscle fatigue. In between groups comparison, significant differences of the peak torque and the torque area were found on the performance of the maximal isometric contraction of quadriceps (p<.05). The values peak of torque and torque area were significantly higher during visual feedback than tactile feedback. The results of this study suggest that visual feedback is more powerful than tactile feedback (p<.01).

  • PDF

Comparison of Cortical Activation between Tactile Stimulation and Two-point Discrimination: An fMRI Case Study (촉각 자극과 두점식별 자극에 따른 뇌활성도 분석: fMRI 사례 연구)

  • Park, Ji-Won;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.4
    • /
    • pp.97-101
    • /
    • 2010
  • Purpose: Sensory input is very important for proper performance of human. Two-point discrimination is the most widely used tactile sensory test. The purpose of this study was to find the changes in cortical activation patterns between tactile stimulation and two-point discrimination. Methods: Two healthy subjects participated in our study. fMRI scanning was done during 4 repeated blocks of tactile stimulation and two point discrimination of the right index finger tip. In one block, stimuli were repeated 10 times every three seconds. To determine the changes of cortical neurons during sensory input, intensity index was analyzed. Results: When tactile stimulation of the right index finger tip was completed, only contralateral primary somatosensory area was activated. In contrast, during two-point discrimination, both the primary somatosensory area and ipsilateral supplementary sensory area were activated. Conclusion: During two point discrimination, both primary somatosensory area and ipsilateral supplementary sensory area were activated. Therefore, two-point discrimination is required more complex and conscious activity than tactile stimulation.