• Title/Summary/Keyword: systems

Search Result 114,265, Processing Time 0.114 seconds

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

Recognition of Resident Registration Card using ART2-based RBF Network and face Verification (ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식)

  • Kim Kwang-Baek;Kim Young-Ju
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • In Korea, a resident registration card has various personal information such as a present address, a resident registration number, a face picture and a fingerprint. A plastic-type resident card currently used is easy to forge or alter and tricks of forgery grow to be high-degree as time goes on. So, whether a resident card is forged or not is difficult to judge by only an examination with the naked eye. This paper proposed an automatic recognition method of a resident card which recognizes a resident registration number by using a refined ART2-based RBF network newly proposed and authenticates a face picture by a template image matching method. The proposed method, first, extracts areas including a resident registration number and the date of issue from a resident card image by applying Sobel masking, median filtering and horizontal smearing operations to the image in turn. To improve the extraction of individual codes from extracted areas, the original image is binarized by using a high-frequency passing filter and CDM masking is applied to the binaried image fur making image information of individual codes better. Lastly, individual codes, which are targets of recognition, are extracted by applying 4-directional contour tracking algorithm to extracted areas in the binarized image. And this paper proposed a refined ART2-based RBF network to recognize individual codes, which applies ART2 as the loaming structure of the middle layer and dynamicaly adjusts a teaming rate in the teaming of the middle and the output layers by using a fuzzy control method to improve the performance of teaming. Also, for the precise judgement of forgey of a resident card, the proposed method supports a face authentication by using a face template database and a template image matching method. For performance evaluation of the proposed method, this paper maked metamorphoses of an original image of resident card such as a forgey of face picture, an addition of noise, variations of contrast variations of intensity and image blurring, and applied these images with original images to experiments. The results of experiment showed that the proposed method is excellent in the recognition of individual codes and the face authentication fur the automatic recognition of a resident card.

  • PDF

The Effect of Information Protection Control Activities on Organizational Effectiveness : Mediating Effects of Information Application (정보보호 통제활동이 조직유효성에 미치는 영향 : 정보활용의 조절효과를 중심으로)

  • Jeong, Gu-Heon;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.71-90
    • /
    • 2011
  • This study was designed to empirically analyze the effect of control activities(physical, managerial and technical securities) of information protection on organizational effectiveness and the mediating effects of information application. The result was summarized as follows. First, the effect of control activities(physical, technical and managerial securities) of information protection on organizational effectiveness showed that the physical, technical and managerial security factors have a significant positive effect on the organizational effectiveness(p < .01). Second, the effect of control activities(physical, technical and managerial securities) of information protection on information application showed that the technical and managerial security factors have a significant positive effect on the information application(p < .01). Third, the explanatory power of models, which additionally put the information protection control activities(physical, technical and managerial securities) and the interaction variables of information application to verify how the information protection control activities( physical, technical and managerial security controls) affecting the organizational effectiveness are mediated by the information application, was 50.6%~4.1% additional increase. And the interaction factor(${\beta}$ = .148, p < .01) of physical security and information application, and interaction factor(${\beta}$ = .196, p < .01) of physical security and information application among additionally-put interaction variables, were statistically significant(p < .01), indicating the information application has mediated the relationship between physical security and managerial security factors of control activities, and organizational effectiveness. As for results stated above, it was proven that physical, technical and managerial factors as internal control activities for information protection are main mechanisms affecting the organizational effectiveness very significantly by information application. In information protection control activities, the more all physical, technical and managerial security factors were efficiently well performed, the higher information application, and the more information application was efficiently controlled and mediated, which it was proven that all these three factors are variables for useful information application. It suggested that they have acted as promotion mechanisms showing a very significant result on the internal customer satisfaction of employees, the efficiency of information management and the reduction of risk in the organizational effectiveness for information protection by the mediating or difficulty of proved information application.

Hierarchical Overlapping Clustering to Detect Complex Concepts (중복을 허용한 계층적 클러스터링에 의한 복합 개념 탐지 방법)

  • Hong, Su-Jeong;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.111-125
    • /
    • 2011
  • Clustering is a process of grouping similar or relevant documents into a cluster and assigning a meaningful concept to the cluster. By this process, clustering facilitates fast and correct search for the relevant documents by narrowing down the range of searching only to the collection of documents belonging to related clusters. For effective clustering, techniques are required for identifying similar documents and grouping them into a cluster, and discovering a concept that is most relevant to the cluster. One of the problems often appearing in this context is the detection of a complex concept that overlaps with several simple concepts at the same hierarchical level. Previous clustering methods were unable to identify and represent a complex concept that belongs to several different clusters at the same level in the concept hierarchy, and also could not validate the semantic hierarchical relationship between a complex concept and each of simple concepts. In order to solve these problems, this paper proposes a new clustering method that identifies and represents complex concepts efficiently. We developed the Hierarchical Overlapping Clustering (HOC) algorithm that modified the traditional Agglomerative Hierarchical Clustering algorithm to allow overlapped clusters at the same level in the concept hierarchy. The HOC algorithm represents the clustering result not by a tree but by a lattice to detect complex concepts. We developed a system that employs the HOC algorithm to carry out the goal of complex concept detection. This system operates in three phases; 1) the preprocessing of documents, 2) the clustering using the HOC algorithm, and 3) the validation of semantic hierarchical relationships among the concepts in the lattice obtained as a result of clustering. The preprocessing phase represents the documents as x-y coordinate values in a 2-dimensional space by considering the weights of terms appearing in the documents. First, it goes through some refinement process by applying stopwords removal and stemming to extract index terms. Then, each index term is assigned a TF-IDF weight value and the x-y coordinate value for each document is determined by combining the TF-IDF values of the terms in it. The clustering phase uses the HOC algorithm in which the similarity between the documents is calculated by applying the Euclidean distance method. Initially, a cluster is generated for each document by grouping those documents that are closest to it. Then, the distance between any two clusters is measured, grouping the closest clusters as a new cluster. This process is repeated until the root cluster is generated. In the validation phase, the feature selection method is applied to validate the appropriateness of the cluster concepts built by the HOC algorithm to see if they have meaningful hierarchical relationships. Feature selection is a method of extracting key features from a document by identifying and assigning weight values to important and representative terms in the document. In order to correctly select key features, a method is needed to determine how each term contributes to the class of the document. Among several methods achieving this goal, this paper adopted the $x^2$�� statistics, which measures the dependency degree of a term t to a class c, and represents the relationship between t and c by a numerical value. To demonstrate the effectiveness of the HOC algorithm, a series of performance evaluation is carried out by using a well-known Reuter-21578 news collection. The result of performance evaluation showed that the HOC algorithm greatly contributes to detecting and producing complex concepts by generating the concept hierarchy in a lattice structure.

The Efficiency Analysis of CRM System in the Hotel Industry Using DEA (DEA를 이용한 호텔 관광 서비스 업계의 CRM 도입 효율성 분석)

  • Kim, Tai-Young;Seol, Kyung-Jin;Kwak, Young-Dai
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.91-110
    • /
    • 2011
  • This paper analyzes the cases where the hotels have increased their services and enhanced their work process through IT solutions to cope with computerization globalization. Also the cases have been studies where national hotels use the CRM solution internally to respond effectively to customers requests, increase customer analysis, and build marketing strategies. In particular, this study discusses the introduction of the CRM solutions and CRM sales business and marketing services using a process for utilizing the presumed, CRM by introducing effective DEA(Data Envelopment Analysis). First, the comparison has done regarding the relative efficiency of L Company with the CCR model, then compared L Company's restaurants and facilities' effectiveness through BCC model. L Company reached a conclusion that it is important to precisely create and manage sales data which are the preliminary data for CRM, and for that reason it made it possible to save sales data generated by POS system on each sales performance database. In order to do that, it newly established Oracle POS system and LORIS POS system concerned with restaurants for food and beverage as well as rooms, and made it possible to stably generate and manage sales data and manage. Moreover, it set up a composite database to control comprehensively the results of work processes during a specific period by collecting customer registration information and made it possible to systematically control the information on sales performances. By establishing a system which unifies database and managing it comprehensively, impeccability of data has been greatly enhanced and a problem which generated asymmetric data could be thoroughly solved. Using data accumulated on the comprehensive database, sales data can be analyzed, categorized, classified through data mining engine imbedded in Polaris CRM and the results can be organized on data mart to provide them in the form of CRM application data. By transforming original sales data into forms which are easy to handle and saving them on data mart separately, it enabled acquiring well-organized data with ease when engaging in various marketing operations, holding a morning meeting and working on decision-making. By using summarized data at data mart, it was possible to process marketing operations such as telemarketing, direct mailing, internet marketing service and service product developments for perceived customers; moreover, information on customer perceptions which is one of CRM's end-products could feed back into the comprehensive database. This research was undertaken to find out how effectively CRM has been employed by comparing and analyzing the management performance of each enterprise site and store after introducing CRM to Hotel enterprises using DEA technique. According to the research results, efficiency evaluation for each site was calculated through input and output factors to find out comparative CRM system usage efficiency of L's Company four sites; moreover, with regard to stores, the sizes of workforce and budget application show a huge difference and so does the each store efficiency. Furthermore, by using the DEA technique, it could assess which sites have comparatively high efficiency and which don't by comparing and evaluating hotel enterprises IT project outcomes such as CRM introduction using the CCR model for each site of the related enterprises. By using the BCC model, it could comparatively evaluate the outcome of CRM usage at each store of A site, which is representative of L Company, and as a result, it could figure out which stores maintain high efficiency in using CRM and which don't. It analyzed the cases of CRM introduction at L Company, which is a hotel enterprise, and precisely evaluated them through DEA. L Company analyzed the customer analysis system by introducing CRM and achieved to provide customers identified through client analysis data with one to one tailored services. Moreover, it could come up with a plan to differentiate the service for customers who revisit by assessing customer discernment rate. As tasks to be solved in the future, it is required to do research on the process analysis which can lead to a specific outcome such as increased sales volumes by carrying on test marketing, target marketing using CRM. Furthermore, it is also necessary to do research on efficiency evaluation in accordance with linkages between other IT solutions such as ERP and CRM system.

Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques (소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스)

  • Cho, In-Dong;Kim, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.127-138
    • /
    • 2011
  • The core service of most research portal sites is providing relevant research papers to various researchers that match their research interests. This kind of service may only be effective and easy to use when a user can provide correct and concrete information about a paper such as the title, authors, and keywords. However, unfortunately, most users of this service are not acquainted with concrete bibliographic information. It implies that most users inevitably experience repeated trial and error attempts of keyword-based search. Especially, retrieving a relevant research paper is more difficult when a user is novice in the research domain and does not know appropriate keywords. In this case, a user should perform iterative searches as follows : i) perform an initial search with an arbitrary keyword, ii) acquire related keywords from the retrieved papers, and iii) perform another search again with the acquired keywords. This usage pattern implies that the level of service quality and user satisfaction of a portal site are strongly affected by the level of keyword management and searching mechanism. To overcome this kind of inefficiency, some leading research portal sites adopt the association rule mining-based keyword recommendation service that is similar to the product recommendation of online shopping malls. However, keyword recommendation only based on association analysis has limitation that it can show only a simple and direct relationship between two keywords. In other words, the association analysis itself is unable to present the complex relationships among many keywords in some adjacent research areas. To overcome this limitation, we propose the hybrid approach for establishing association network among keywords used in research papers. The keyword association network can be established by the following phases : i) a set of keywords specified in a certain paper are regarded as co-purchased items, ii) perform association analysis for the keywords and extract frequent patterns of keywords that satisfy predefined thresholds of confidence, support, and lift, and iii) schematize the frequent keyword patterns as a network to show the core keywords of each research area and connecting keywords among two or more research areas. To estimate the practical application of our approach, we performed a simple experiment with 600 keywords. The keywords are extracted from 131 research papers published in five prominent Korean journals in 2009. In the experiment, we used the SAS Enterprise Miner for association analysis and the R software for social network analysis. As the final outcome, we presented a network diagram and a cluster dendrogram for the keyword association network. We summarized the results in Section 4 of this paper. The main contribution of our proposed approach can be found in the following aspects : i) the keyword network can provide an initial roadmap of a research area to researchers who are novice in the domain, ii) a researcher can grasp the distribution of many keywords neighboring to a certain keyword, and iii) researchers can get some idea for converging different research areas by observing connecting keywords in the keyword association network. Further studies should include the following. First, the current version of our approach does not implement a standard meta-dictionary. For practical use, homonyms, synonyms, and multilingual problems should be resolved with a standard meta-dictionary. Additionally, more clear guidelines for clustering research areas and defining core and connecting keywords should be provided. Finally, intensive experiments not only on Korean research papers but also on international papers should be performed in further studies.

Bankruptcy prediction using an improved bagging ensemble (개선된 배깅 앙상블을 활용한 기업부도예측)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.121-139
    • /
    • 2014
  • Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.

A Intelligent Diagnostic Model that base on Case-Based Reasoning according to Korea - International Financial Reporting Standards (K-IFRS에 따른 사례기반추론에 기반한 지능형 기업 진단 모형)

  • Lee, Hyoung-Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.141-154
    • /
    • 2014
  • The adoption of International Financial Reporting Standards (IFRS) is the one of important issues in the recent accounting research because the change from local GAAP (Generally Accepted Accounting Principles) to IFRS has a substantial effect on accounting information. Over 100 countries including Australia, China, Canada and the European Union member countries adopt IFRS (International Financial Reporting Standards) for financial reporting purposes, and several more including the United States and Japan are considering the adoption of IFRS (International Financial Reporting Standards). In Korea, 61 firms voluntarily adopted Korean International Financial Reporting Standard (K-IFRS) in 2009 and 2010 and all listed firms mandatorily adopted K-IFRS (Korea-International Financial Reporting Standards) in 2011. The adoption of IFRS is expected to increase financial statement comparability, improve corporate transparency, increase the quality of financial reporting, and hence, provide benefits to investors This study investigates whether recognized accounts receivable discounting (AR discounting) under Korean International Financial Reporting Standard (K-IFRS) is more value relevant than disclosed AR discounting under Korean Generally Accepted Accounting Principles (K-GAAP). Because more rigorous standards are applied to the derecognition of AR discounting under K-IFRS(Korea-International Financial Reporting Standards), most AR discounting is recognized as a short term debt instead of being disclosed as a contingent liability unless all risks and rewards are transferred. In this research, I try to figure out industrial responses to the changes in accounting rules for the treatment of accounts receivable toward more strict standards in the recognition of sales which occurs with the adoption of Korea International Financial Reporting Standard. This study examines whether accounting information is more value-relevant, especially information on accounts receivable discounting (hereinafter, AR discounting) is value-relevant under K-IFRS (Korea-International Financial Reporting Standards). First, note that AR discounting involves the transfer of financial assets. Under Korean Generally Accepted Accounting Principles (K-GAAP), when firms discount AR to banks before the AR maturity, firms conventionally remove AR from the balance-sheet and report losses from AR discounting and disclose and explain the transactions in the footnotes. Under K-IFRS (Korea-International Financial Reporting Standards), however, most firms keep AR and add a short-term debt as same as discounted AR. This process increases the firms' leverage ratio and raises the concern to the firms about investors' reactions to worsening capital structures. Investors may experience the change in perceived risk of the firm. In the study sample, the average of AR discounting is 75.3 billion won (maximum 3.6 trillion won and minimum 18 million won), which is, on average 7.0% of assets (maximum 38.6% and minimum 0.002%), 26.2% of firms' accounts receivable (maximum 92.5% and minimum 0.003%) and 13.5% of total liabilities (maximum 69.5% and minimum 0.004%). After the adoption of K-IFRS (Korea-International Financial Reporting Standards), total liabilities increase by 13%p on average (maximum 103%p and minimum 0.004%p) attributable to AR discounting. The leverage ratio (total liabilities/total assets) increases by an average 2.4%p (maximum 16%p and minimum 0.001%p) and debt-to-equity ratio increases by average 14.6%p (maximum 134%p and minimum 0.006%) attributable to the recognition of AR discounting as a short-term debt. The structure of debts and equities of the companies engaging in factoring transactions are likely to be affected in the changes of accounting rule. I suggest that the changes in accounting provisions subsequent to Korea International Financial Reporting Standard adoption caused significant influence on the structure of firm's asset and liabilities. Due to this changes, the treatment of account receivable discounting have become critical. This paper proposes an intelligent diagnostic system for estimating negative impact on stock value with self-organizing maps and case based reasoning. To validate the usefulness of this proposed model, real data was analyzed. In order to get the significance of this proposed model, several models were compared to the research model. I found out that this proposed model provides satisfactory results with compared models.

Analyzing the Issue Life Cycle by Mapping Inter-Period Issues (기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.25-41
    • /
    • 2014
  • Recently, the number of social media users has increased rapidly because of the prevalence of smart devices. As a result, the amount of real-time data has been increasing exponentially, which, in turn, is generating more interest in using such data to create added value. For instance, several attempts are being made to analyze the relevant search keywords that are frequently used on new portal sites and the words that are regularly mentioned on various social media in order to identify social issues. The technique of "topic analysis" is employed in order to identify topics and themes from a large amount of text documents. As one of the most prevalent applications of topic analysis, the technique of issue tracking investigates changes in the social issues that are identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has two limitations. First, when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. This creates practical limitations in the form of significant time and cost burdens. Therefore, this traditional approach is difficult to apply in most applications that need to perform an analysis on the additional period. Second, the issue is not only generated and terminated constantly, but also one issue can sometimes be distributed into several issues or multiple issues can be integrated into one single issue. In other words, each issue is characterized by a life cycle that consists of the stages of creation, transition (merging and segmentation), and termination. The existing issue tracking methods do not address the connection and effect relationship between these issues. The purpose of this study is to overcome the two limitations of the existing issue tracking method, one being the limitation regarding the analysis method and the other being the limitation involving the lack of consideration of the changeability of the issues. Let us assume that we perform multiple topic analysis for each multiple period. Then it is essential to map issues of different periods in order to trace trend of issues. However, it is not easy to discover connection between issues of different periods because the issues derived for each period mutually contain heterogeneity. In this study, to overcome these limitations without having to analyze the entire period's documents simultaneously, the analysis can be performed independently for each period. In addition, we performed issue mapping to link the identified issues of each period. An integrated approach on each details period was presented, and the issue flow of the entire integrated period was depicted in this study. Thus, as the entire process of the issue life cycle, including the stages of creation, transition (merging and segmentation), and extinction, is identified and examined systematically, the changeability of the issues was analyzed in this study. The proposed methodology is highly efficient in terms of time and cost, as it sufficiently considered the changeability of the issues. Further, the results of this study can be used to adapt the methodology to a practical situation. By applying the proposed methodology to actual Internet news, the potential practical applications of the proposed methodology are analyzed. Consequently, the proposed methodology was able to extend the period of the analysis and it could follow the course of progress of each issue's life cycle. Further, this methodology can facilitate a clearer understanding of complex social phenomena using topic analysis.

Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products (자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로)

  • Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2014
  • Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.