• Title/Summary/Keyword: system rig test

Search Result 194, Processing Time 0.027 seconds

Characteristics of Unsteady Flows in a Semi-Induction System by a Variable Volume Helmholtz Resonator (가변 체적 헬름홀츠 공진기에 의한 유사 흡기 시스템의 비정상 유동특성)

  • Kang, K.E.;Kim, K.H.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.57-62
    • /
    • 2009
  • Unsteady flows in a semi-induction system was investigated to verify their characteristics. A semi-induction system was designed and made to verify the Sow characteristics in an intake system. To attain an intact wave of an intake pulse, a single semi-intake system was adopted as a test rig. The system consists of an intake pipe and a rotary valve as a pulse generator, and a variable volume Helmholtz resonator. The variable volume Helmholtz resonator was mounted in the intake pipe to enhance a breathing capacity and engine performance. The phase and amplitude of the pulsating flow in an unsteady flow system were found to affect the charging capacity significantly. The behavior of pressure wave, their phase and amplitude were investigated in various regions. Some of the results obtained from experiments were described.

  • PDF

Modeling and Validation of 3DOF Dynamics of Maglev Vehicle Considering Guideway (궤도 선형을 고려한 자기부상 열차의 3자유도 동역학 모델 수립 및 검증)

  • Park, Hyeon-cheol;Noh, Myounggyu;Kang, Heung-Sik;Han, Hyung-Suk;Kim, Chang-Hyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Magnetically levitated (Maglev) vehicles maintain a constant air gap between guideway and car bogie, and thereby achieves non-contact riding. Since the straightness and the flatness of the guideway directly affect the stability of levitation as well as the ride comfort, it is necessary to monitor the status of the guideway and to alert the train operators to any abnormal conditions. In order to develop a signal processing algorithm that extracts guideway irregularities from sensor data, virtual testing using a simulation model would be convenient for analyzing the exact effects of any input as long as the model describes the actual system accurately. Simulation model can also be used as an estimation model. In this paper, we develop a state-space dynamic model of a maglev vehicle system, running on the guideway that contains jumps. This model contains not only the dynamics of the vehicle, but also the descriptions of the power amplifier, the anti-aliasing filter and the sampling delay. A test rig is built for the validation of the model. The test rig consists of a small-scale maglev vehicle, tracks with artificial jumps, and various sensors measuring displacements, accelerations, and coil currents. The experimental data matches well with those from the simulation model, indicating the validity of the model.

QFT application on force controller design for aircraft control surface load simulator (항공기 조종면 부하재현 구동장치의 force control)

  • 남윤수;이진영;이기두
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1684-1687
    • /
    • 1997
  • A dynamic load simulator which can reproduce on-ground the hinge moment of aircraft control surface is and essential rig for the loaded performance test of aircraft test of aircraft acutation system. The hinge moment varies wide in the aricraft flight enveloped depending on specific flight condition and maneuvering status. To replicate the wide spectrum of this hinge moment variation within some accuracy bounds, a force controller is designed based on the Quantiative Feedback Theory (AFT). Through the analysis on hinge moment dynamics, a design specification for the force controller is suggested. The efficacy of QFT force controller is verivied by simulation, in which combined aricraft dynamics/flight control law and hydraulic actuation system dynamics of aircraft control surface are considered.

  • PDF

A Study on the Aerodynamic Design of Three-Dimensional Axial Type Turbine Blade (3차원 축류형 터빈익형의 공력설계에 관한 연구)

  • Jang, B.I.;Kim, D.S.;Cho, S.Y.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.38-47
    • /
    • 2001
  • One stage axial type turbine is designed by mean-line analysis, streamline curvature method and blade design method using shape parameters. Tip and hub diameter of the turbine are 300mm and 206.4mm, respectively. The rotating speed is 1800RPM, and the output power is 1.4kW. The flow coefficient is 1.68 and the reaction factor at mean-line is 0.373. The number of stator and rotor of the turbine are 31 and 41, respectively. Mach number of stator exit flow near hub is 0.164. A test rig is developed for performance test to validate a developed design method. The experimental result shows that the maximum efficiency is obtained on the design point.

  • PDF

Development of a Helicopter Rotor Test Rig and Measurement of Aeroacoustic Characteristics (헬리콥터 로터 시험장치의 개발 및 공력소음특성의 측정)

  • Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.10-16
    • /
    • 2004
  • In this paper the aeroacoustic characteristics of a helicopter main rotor system is measured by using a pair of scaled rotor blades. A low noise rotor test jig is developed for noise measurement and the rotational speed, thrust and torque are measured simultaneously in order to match the aerodynamic conditions with the full scale rotor. The accuracy of the force measurement device was checked through a calibration procedure. The measured thurst and torque with a 1.2m rotor are compared to the results of analytical prediction and showed that the thrust data at various rotational speed followed the prediction relatively well, but the torque data considered less accurate. It is also found that the background noise level of the test rig is sufficiently low, and the measured noise level from the rotor can be scaled with rotor tip speed. However, the Mach number dependancy and the directivity changes depend on the noise source characteristics.

An Experimental Study on Measurement of Flow Coefficient Using the Steady-Flow Test Rig (정상유동장치를 이용한 유량계수 측정에 관한 실험적 연구)

  • Park, Sang-Wook;Choi, Ik-Soo;Noh, Ki-Chol;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.423-429
    • /
    • 2012
  • Miller cycle is considered as an effective means to meet the regulation on Tier II and to reduce $CO_2$ emission. For this cycle, the amount of intake air supplied should be enough increased. Therefore, the intake system with minimized resistance for air flow is under consideration. In this study, the flow coefficients of intake valves were measured in order to obtain the basic data for the cycle simulation and intake port design. The flow coefficients were measured using the steady-flow test rig. As a test result for the poppet valve used the marine engine with medium speed, the flow coefficients are increased to about 0.62 with the valve lift. In addition it is confirmed that the flow coefficients have the characteristic value irrelevant to the S/B ratio.

Development of Measurement System for Tappet Rotation in the Valve Train System (밸브 트레인 시스템의 태핏 회전 측정 장치의 개발)

  • 김형준;조명래;신흥주;한동철
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.81-86
    • /
    • 1998
  • The purpose of this paper is to measure the rotational speed of tappet in OHC valve train system. Tappet has eccentricity about cam center, which induces the tappet rotation and prevents from wear. In this paper, the experimental test rig which composes of one cam system is developed to measure the tappet rotation by using the laser generating system, rotary encoder, optical fiber, and photo transistor. The direction of tappet rotation is judged from the oder of optical signal. As results of experiment, average and instant rotational speed and average rotation angle per one cam revolution are presented. Measured results show that eccentricity ratio is dominant factor for the tappet rotation, and tappet is rotated at the base circle.

Design of Semi-Active suspension system for Railway Vehicle with narrow gauge (협궤 차량용 준능동형 현가 시스템 설계)

  • Lee Nam-Jin;Kim Chul-Gun;Nam Hak-Gi
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.473-478
    • /
    • 2005
  • Active suspension system improves ride quality with optimized suspension force, generated by electric, hydrolic or pneumatic power and controlled by micro-processor under various operation condition of train, while Semi-Active susepsion system provides optimized and controlled characteristics of suspensions such as damping coefficient without external energy. The benefits fo Semi-Active suspension are no required power source and to be made compact with lower cost. Train with narrow gauge could be more unstable than one for normal or wide gauge, and it could be more vibrated than others one by external force such as aerodynamic force and track irregularity. So, the reduced ride quality could be improved with appling with Semi-active suspension system. In this report, the Semi-Active suspension system for narrow gauge train shall be proposed and to prepare the Roller Rig test of this train, integration of system, development of control algorithm and confirmation of its performance with simulation tool would be taken.

  • PDF

A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

A Study on the New 3-D Angular Flow Index for Evaluation of In-Cylinder Bulk Flow Characteristics of the Air Induced by Variable Induction System (가변 흡기시스템에 의해 유도되는 흡입공기의 유동특성 평가를 위한 새로운 3차원 회전유동 지수에 관한 연구)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Sim, Dae-Gon;Park, Pyeong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.99-105
    • /
    • 2007
  • It is very important to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system. In-cylinder flow induced by variable induction system is very complex, so we can not describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$), for in-cylinder bulk flow characteristics. And also, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.