The larger and the more complicated the system size and configuration grow, the more serious the system loss problem becomes. Exessive system loss causes severs system voltage depression, which even may result in system voltage collapse. This paper proposes an effective tool for minimizing the system power loss by optimal re-location of the static condenser based on the system loss sensitivity index .lambda.$_{Q}$. It is possible to determine the optimal location and amount of VAR investment for minimizing the system loss by priority of .lambda.$_{Q}$ index given for each bus. Several computational techniques for avoiding divergency of the load flow solution are proposed. The loss sensitivity index .lambda.$_{Q}$ uses information of normal power flow equations and their Jacobians. Two case studies proved the effectiveness of the algorithm proposed.posed.
In the paper, the system loss sensitivity index that implies the incremental system loss with respect to the change of bus power is derived using optimization technique. The index λ reaches $\infty$ at critical loading point and can be applied to actual power systems for following purposes. 1) Evaluation of system voltage stability 2)Optimal investment of reactive power focused on minimizing system loss and maximizing system voltage stability 3)Optimal re-location of reactive power focused on minimizing system loss and maximizing system voltage stability 4)Optimal load shedding in case of severe system contingency focused on minimizing system loss and maximizing system voltage stability. Case studies for each application have proved their effectiveness.
In this paper, a new voltage collapse proximity index (VCPI) based on system apparent power loss sensitivity is proposed. The newly proposed index .lambda.$^{Sloss}$ reaches -.inf. at system voltage collapse point and can be represented by .root..lambda.$^{Ploss}$$^{2}$+.lambda.$^{Qloss}$$^{2}$ where .lambda.$^{Ploss}$ and .lambda.$^{Qloss}$ are the VCPI based on the system active and reactive power loss sensitivity respectively. These indices can be used for the system VAR investment. .DELTA.Q [VAR] is invested, step by step, by the priority of the VCPI index given for each bus. The indices use information from normal power flow equations and their Jacobians. Computation time for deriving .lambda.$^{Sloss}$ is almost same as that for power flow calculation. Two case studies prove the effectiveness of the .lambda.$^{Sloss}$ index and the VAR investment algorithm proposed.
Recent years voltage collapse phenomenon have a great attention to power system engineers. As the system size increases the voltage problem shows a very complicated and the reactive power contol problem becomes more difficult. This paper gives an efficient methods for calculating voltage collapse proximity index based on the reactive power loss sensitivity and real power loss sensitivity. The system voltages are tightly associated with the system reactive power, so the proposed voltage collapse proximity index is very usefull for the system voltage control problems. Numerical examples showed a good and reliable results.
Distribution system is a critical link between customer and utility. The control of power loss is the main factor which decides the performance of the distribution system. There are two methods such as (i) distribution system reconfiguration and (ii) inclusion of capacitor banks, used for controlling the real power loss. Considering the improvement in voltage profile with the power loss reduction, later method produces better performance than former method. This paper presents an advanced evolutionary algorithm for capacitor inclusion for loss reduction. The conventional sensitivity analysis is used to find the optimal location for the capacitors. In order to achieve a better approximation for the current candidate solution, Opposition based Differential Evolution (ODE) is introduced. The effectiveness of the proposed technique is validated through 10, 33, 34 and85-bus radial distribution systems.
In recent years, much attention has been paid to the voltage collapse phenomena. There has been reported many cases about the voltage collapse in many countries. These voltage collapse phenomena are known as the event that can occur due to reactive power deficits. This paper proposes an efficient method that can pursue the reactive power loss changes and gives the simple voltage collapse proximity indicator(VCPI) based on the reactive power loss sensitivities using optimal techniques. By comparing reactive power loss sensitivity with active power loss sensitivity, it is also proved that VCPI based on reactive power loss sensitivities is more effective. The developed VCPI is derived from the Jacobian matrix of Load Flow and the computational burden is very low and on-line implementation is possible. The proposed method is applied to a IEEE-14 bus test system and reliable and promising results are obtained.
The ELD computation has been based upon the so-called B-coefficient which uses a quadratic approximation of system loss as a function of generation output. Direct derivation of system loss sensitivity based on the Jacobian-based method was developed in early 1970s', which could eliminate the dependence upon the approximate loss formula. However, both the B-coefficient and the Jacobian-based method require a complicated Procedure for calculating the system loss sensitivity included in the constraints of the optimization problem. In this paper, an ELD formulation in which only the bus power equations are defined as the constraints has been introduced. Derivation of the partial derivatives of the system loss with respect to the generator output and calculation of the penalty factors for individual generators are not required anymore in proposed method. A comprehensive solution procedure including calculation of the Jacobians and Hessians of the formulation has been presented in detail. Proposed ELD formulation has been tested on a sample system and the simulation indicated a satisfactory result.
The deregulation problem has recently attracted attentions in a competitive electric power market, where the cost must be earmarked fairly and precisely for the customers and the Independent Power Producers (IPPs) as well. Transmission loss is an one of several important factors that determines power transmission cost. Because the cost caused by transmission losses is about $3{\sim}5%$, it is important to allocate transmission losses into each bus in a power system. This paper presents the new algorithm to allocate transmission losses based on an integration method using the loss sensitivity. It provides the buswise incremental transmission losses through the calculation of load ratios considering the transaction strategy of an overall system. The performance of the proposed algorithm is evaluated by the case studies carried out on the WSCC 9-bus and IEEE 14-bus systems.
Transactions on Electrical and Electronic Materials
/
제18권5호
/
pp.279-286
/
2017
In this paper, an optimal approach for the wide-area regulation of control devices in a transmission network is proposed. In order to realize an improved voltage profile and reduced power loss, existing devices such as tap-changing transformers, synchronous machines, and capacitor banks should be controlled in a coordinated and on-line manner. It is well-understood that phasor measurement units in transmission substations allow the system operators to access the on-line loading and operation status of the network. Accordingly, this study proposes efficient software applications that can be employed in area operation centers. Thus, the implanted control devices can be regulated in an on-line and wide-area coordinated approach. In this process, efficient objective functions are devised for both voltage profile improvement and power loss reduction. Subsequently, sensitivity analysis is carried out to determine the best weighting factors for these objectives. Extensive numerical studies are conducted on an IEEE 14-bus test system and a real-world system named the Azarbayjan Regional Transmission Network. The obtained results are discussed in detail to highlight the promising improvements.
In this paper, a MW-Mvar investment technique focused on minimizing the system loss is presented. An optimization technique, in which the system loss is defined as the objective function and the power flow equations as the constraints, is introduced to obtain the Lagrangian multipliers λP and λQ. The Lagrangian multipliers imply the variation of the system loss with respect to incremental bus power and are used as MW-Mvar investment indices for minimizing the system loss. ΔP MW and ΔQ Mvar are invested, step by step, by the priority of λP and λQ index given for each bus. Derivation of the index uses the information from normal power flow calculation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.