• Title/Summary/Keyword: system geometry

Search Result 1,972, Processing Time 0.03 seconds

FDTD 방법을 이용한 3T MRI용 RF 코일의 해석

  • 이종오;박준서;명노훈;박부식;김용권;정성택
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.976-983
    • /
    • 2000
  • In this paper, Bridcage type RF coils used widely as RF coils for MRI and its applicable type, spiral type RF coil are analyzed and designed using FDTD method. In low tesla (IT, 1.5T) MRI system, several tools have been used for the analysis and design of the RF coils for MRI. This includes, so-called, LC equivalent circuit method for predicting the resonance frequency of the coil and the Biot-Savart law to determine the field distribution within the coil. Both of the circuit analysis and Biot-Savart law are low frequency techniques. Therefore, at high frequency applications, the circuit model approximation breaks down because the coil geometry is a significant fraction of the wavelength. In this paper, we analyzed and designed RF coils for 3T MRI using FDTD method. This method is a full wave analysis and very accurate at low and high frequencies. Also, this RF coils are actually fabricated and FDTD models of RF coils for MRI are proven.

  • PDF

Thermal Phenomena of an N2O Catalyst Bed for Hybrid Rockets Using a Porous Medium Approach (다공성 매질 접근법을 적용한 하이브리드 로켓 N2O 촉매 점화기의 열적 현상)

  • 유우준;김수종;김진곤;장석필
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, fluid flow and thermal characteristics in a catalyst bed for nitrous oxide catalytic decomposition which is introduced as a hybrid rocket ignition system for small satellites were theoretically considered. To analyze the thermal phenomena of the catalyst bed, a so-called porous medium approach has been opted for modeling the honeycomb geometry of the catalyst bed. Using a Brinkman-extended Darcy model for fluid flow and the one-equation model for heat transfer, the analytical solutions for both velocity and temperature distributions in the catalyst bed are obtained and compared with experimental data to validate the porous medium approach. Based on the analytical solutions, parameters of engineering importance are identified to be the porosity of the catalyst bed, effective volumetric ratio, the ratio of the radius of the catalyst bed to the radius of a pore, heat flux generated by a heater, and pumping power. Their effects on thermal phenomena of the catalyst bed are studied.

Two-Dimensional Flow Analysis of Approach Channel for the Design of Spillway Guidewall (여수로 유도벽 설계를 위한 접근수로의 2차원 흐름해석)

  • Lee, Gil-Seong;Kim, Nam-Il
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.491-501
    • /
    • 1998
  • Numerical simulations were performed to analyse the flow pattern of the approach channel and to design the spillway guidewall for stable flow conditions. RMA-2, two dimensional finite element model which can easily represent complicated geometry was used, and model parameters were estimated from the observation data of hydraulic model test. Numerical experiments were made separately for the approach region and for the upstream region, and upstream boundary position of the hydraulic model beyond which the boundary effects are negligible was determined from the numerical results. For the stable flow condition in approach channel, alternative designs for guidewall were developed, and flow analysis for alternative designs was done through the numerical simulation. From the analysis of alternative design, we can see that the flow pattern in the approach channel is stable and the lateral stage difference disappears mostly before the spillway crest.

  • PDF

The Limit of the Continuum Assumption Based on Compressible Flow Structures in an Axisymmetric Micro-Thruster Used for a Satellite (인공위성용 축대칭 소형 추력기의 압축성 유동 구조 계산에 의한 연속체 가정의 적용 한계)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Lee, Kee-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.281-285
    • /
    • 2007
  • The flow characteristics in the thruster should be analyzed considering its geometry and the pressure ratio to estimate its performance and etc. This paper suggests the computational result of an axisymmetric real nozzle for the altitude control of a satellite to find out the application limit that the assumption of continuum mechanics holds. The steady non-reacted compressible flow field in the unstructured grid system is computed and analyzed with varying the environmental pressure (or the degree of vacuum) under the fixed pressure ratio in a real thruster of which the area ratio of exit to throat is 56. The assumption of the continuum mechanics is not approved when the environmental pressure is reduced less than $10^{-3}$ atm.

  • PDF

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.104-104
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate. A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side is installed in the form of coolant block around vertical tube and the heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 15 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348 -3.282kg/hr, of inlet air mass fraction 11.8 -55.0%. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the decrease of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed represented with the 165 sets of local heat transfer data. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17. 7% between the results by the experiment and by the correlation.

  • PDF

APOLLO2 YEAR 2010

  • Sanchez, Richard;Zmijarevi, Igor;Coste-Delclaux, M.;Masiello, Emiliano;Santandrea, Simone;Martinolli, Emanuele;Villate, Laurence;Schwartz, Nadine;Guler, Nathalie
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.474-499
    • /
    • 2010
  • This paper presents the mostortant developments implemented in the APOLLO2 spectral code since its last general presentation at the 1999 M&C conference in Madrid. APOLLO2 has been provided with new capabilities in the domain of cross section self-shielding, including mixture effects and transfer matrix self-shielding, new or improved flux solvers (CPM for RZ geometry, heterogeneous cells for short MOC and the linear-surface scheme for long MOC), improved acceleration techniques ($DP_1$), that are also applied to thermal and external iterations, and a number of sophisticated modules and tools to help user calculations. The method of characteristics, which took over the collision probability method as the main flux solver of the code, allows for whole core two-dimensional heterogeneous calculations. A flux reconstruction technique leads to fast albeit accurate solutions used for industrial applications. The APOLLO2 code has been integrated (APOLLO2-A) within the $ARCADIA^{(R)}$ reactor code system of AREVA as cross section generator for PWR and BWR fuel assemblies. APOLLO2 is also extensively used by Electricite de France within its reactor calculation chain. A number of numerical examples are presented to illustrate APOLLO2 accuracy by comparison to Monte Carlo reference calculations. Results of the validation program are compared to the measured values on power plants and critical experiments.

Studies of Interface Continuity in Isogeometric Structural Analysis for Multi-patch Shell Components (다중 패치 쉘 아이소 지오메트릭 해석의 계면 연속성 검토)

  • Ha, Youn Doh;Noh, Jungmin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.71-78
    • /
    • 2018
  • This paper presents the assembling of multiple patches based on the single patch isogeometric formulation for the shear deformable shell element given in the previous study. The geometrically exact shell formulation has been accomplished with the shell theory based formulation and the generalized curvilinear coordinate system directly derived from the given NURBS geometry. For the knot elements matching across adjacent surfaces, the zero-th and first parametric continuity conditions are considered and the corresponding coupling constraints are implemented by a master-slave formulation between adjacent patches. The constraints are then enforced by a substitution method for condensation of the slave variables, thereby reducing the model size. Through numerical investigations, the important features of the first parametric continuity condition are confirmed. The performance of the multi-patch shell models is also examined comparing the rate of convergence of response coefficients for the zero and first order continuity conditions and continuity in coupling boundary between two patches is confirmed.

Studies on Fracture Criterion in Yellow Lauan(Shorea spp.) under Mode I, Mode II and Mixed Mode Loading (황(黃)라왕재(Shorea spp.)의 모드 I, 모드 II 및 혼합(混合)모드 하중시(荷重時) 파괴기준(破壞基準)에 관(關)한 연구(硏究))

  • Shim, Kug-Bo;Lee, Jun-Jae;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.61-72
    • /
    • 1992
  • This study was carried out to investigate the fracture behavior and the fracture criterion of yellow lauan(Shorea spp.), when has used for furniture and wood structures, and to offer a reliability for wood structure and basic data for wood fracture criterion in experiments which are fracture tested under mode I, mode II and mixed mode loading condition. The results were summarized as follows; 1. Fractures in specimens which have inclined grain in yellow lauan procedeed from crack tip in the radial direction along the grain. 2. In yellow lauan, $K_{IC}RL$ was 42.1kg/$cm^{3/2}$ and $K_{IIC}RL$ was 15.8kg/$cm^{3/2}$. 3. The fracture criteria of lauan were; ($K_I/K_{IC}$)+($K_{II}/K_{IIC}$)=1 in RL system with inclined grain at $45^{\circ}$, ($K_I/K_{IC}$)+$(K_{II}/K_{IIC})^2$=1 with inclined grain at $15^{\circ}$ and $(K_I/K_{IC})^2$+$(K_{II}/K_{IIC})^2$=1 with inclined grain at $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$, respectively. 4. The fracture criterion of wood could vary with the species, and the load applying condition. In order to measure the fracture criterion strictly, along with standardization of specimen geometry a large amount of experimental data is needed. 5. $K_{IC}$(critical stress intensity factor) can be predicted by grain angle. As the grain inclined angle increased, $K_{IC}$ and $K_{IIC}$ are increased.

  • PDF

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

Illumination and Rotation Invariant Object Recognition (조명 영향 및 회전에 강인한 물체 인식)

  • Kim, Kye-Kyung;Kim, Jae-Hong;Lee, Jae-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.1-8
    • /
    • 2012
  • The application of object recognition technology has been increased with a growing need to introduce automated system in industry. However, object transformed by noises and shadows appeared from illumination causes challenge problem in object detection and recognition. In this paper, an illumination invariant object detection using a DoG filter and adaptive threshold is proposed that reduces noises and shadows effects and reserves geometry features of object. And also, rotation invariant object recognition is proposed that has trained with neural network using classes categorized by object type and rotation angle. The simulation has been processed to evaluate feasibility of the proposed method that shows the accuracy of 99.86% and the matching speed of 0.03 seconds on ETRI database, which has 16,848 object images that has obtained in various lighting environment.