• 제목/요약/키워드: system geometry

검색결과 1,972건 처리시간 0.027초

Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발 (A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm)

  • 김면희;배준영;이상룡
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

RP를 이용한 용접비드 형상예측 시스템 개발에 관한 연구 (A study on development of the system for prediction of bead geometry using Rapid Prototyping)

  • 손준식;김일수;;박창언;성백섭;이진구;정호성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.637-642
    • /
    • 2002
  • Generally, the use of robots in manufacturing industry has been increased during the past decade. GMA(Gas Metal Are) welding is an actively growing area and many new procedures have been developed for use with high strength alloys. One of the basic requirement for welding applications is to study relationships between process parameters and bead geometry. The objective of this paper is to develop a new approach involving the use of neural network and multiple regression methods in the prediction of bead geometry for GMA welding process and to develop an intelligent system that enables the prediction of bead geometry using Rapid Prototyping(RP) in order to employ the robotic GMA welding processes. This system developed using MATLAB/SIMULINK, could be effectively implemented not only for estimating bead geometry, but also employed to monitor and control the bead geometry in real time.

  • PDF

실험 계획법을 사용한 B-Pillar 성형공정에서 블랭크 형상 최적화 (Optimization of blank geometry for the stamping process of B-pillar using design of experiments)

  • 윤형원;최용석;이창환
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.17-22
    • /
    • 2021
  • The shape of the blank greatly affects the formability and quality of the product after the stamping process. In this study, the geometry of the B-Pillar blank in the stamping process was optimized using design of experiments. The geometry of the blank for the B-pillar was simplified with the two length values and two radius values. The effects of design variables were studied through the Design of experiments. The stamping process of the B-pillar was predicted with the Finite Element Analysis (FEA). The optimized blank geometry was obtained. It results in the reduced maximum equivalent plastic strain. The local necking and the wrinkling did not occurred with the optimized blank geometry.

Parametric Design on Bellows of Piping System Using Fuzzy Knowledge Processing

  • Lee Yang-Chang;Lee Joon-Seong;Choi Yoon-Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.144-149
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

Parametric Study on Bellows of Piping System Using Fuzzy Theory

  • Lee Yang-Chang;Lee Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.58-63
    • /
    • 2006
  • This paper describes a novel automated analysis system for bellows of piping system. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy theory and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes and one of commercial solid modelers. In this system, a geometric model, i.e. an analysis model, is first defined using a commercial solid modelers for 3-D shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation technique is introduced as a basic tool for element generation. The triangular elements are converted to quadrilateral elements. Practical performances of the present system are demonstrated through several analysis for bellows of piping system.

GA를 이용한 PC 기반 Hand-Geometry 인식시스템의 Nail 영역 추출에 관한 연구 (A Study on the Extraction of Nail's Region from PC-based Hand-Geometry Recognition System Using GA)

  • 김영탁;김수정;박주원;이상배
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.506-511
    • /
    • 2004
  • 최근 몇 년 동안 사람들의 고유한 생리적인 특징을 이용한 생체 인식은 새로운 학문으로서 연구 및 개발이 활발하게 진행되고 있다. 지금까지, 오로지 지문 인식만이 다른 생체 인식에 비해 확인과 식별 시스템들이 더 정교하고, 비싼 취득 인터페이스들과 인식 과정을 필요로 하기 때문에 온라인 보안 검사를 위하여 한정된 성공을 보았다. Hand-Geometry는 생체 인식의 확인 그리고 취득의 편리 때문에 식별 그리고 확인을 위하여 사용되고 있다. 그러므로, 본 논문은 이러한 특징을 가지는 손의 기하학적인 Hand-Geometry 인식 시스템을 제안하고자 한다. 해부학적인 관점에서, 인간의 손은 길이, 폭, 두께, 기하학적인 모양, 손바닥의 모양, 그리고 손가락들의 기하학적인 모양까지 특성으로 나타내어질 수 있다. 본 논문에서 제안한 Hand-Geometry 인식 시스템은 30개의 특징 데이터를 가진다. 그러나 특징 데이터 가운데 사용자의 Hand-Geometry의 특징에 따라 길이 데이터가 변하는 것을 실험적으로 발견하였다. 따라서 이와 같은 가변적인 길이 데이터를 안정화시키기 위하여 본 논문에서는 길이 데이터의 기준점을 손톱 아래 점으로 정하고, GA를 적용하여 보다 안정된 특징점을 추출하였다.

GMA용접에서 비드단면형상을 예측하기 위한 실험적 모델의 개발 (Development of Experimental Model fer Bead profile Prediction in GMA Welding)

  • 손준식;김일수;박창언;김인주;정호성
    • Journal of Welding and Joining
    • /
    • 제23권4호
    • /
    • pp.41-47
    • /
    • 2005
  • Generally, the use of robots in manufacturing industry has been increased during the past decade. GMA(Gas Metal Arc) welding process is an actively Vowing area, and many new procedures have been developed for use with high strength alloys. One of the basic requirement for the automatic welding applications is to investigate relationships between process parameters and bead geometry. The objective of this paper is to develop a new approach involving the use of neural network and multiple regression methods in the prediction of bead geometry for GMA welding process and to develop an intelligent system that visualize bead geometry in order to employ the robotic GMA welding processes. Examples of the simulation for GMA welding process are supplied to demonstrate and verify the proposed system developed using MATLAB. The developed system could be effectively implemented not oかy for estimating bead geometry, but also employed to monitor and control the bead geometry in real time.

Determination of Epipolar Geometry for High Resolution Satellite Images

  • Noh Myoung-Jong;Cho Woosug
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.652-655
    • /
    • 2004
  • The geometry of satellite image captured by linear pushbroom scanner is different from that of frame camera image. Since the exterior orientation parameters for satellite image will vary scan line by scan line, the epipolar geometry of satellite image differs from that of frame camera image. As we know, 2D affine orientation for the epipolar image of linear pushbroom scanners system are well-established by using the collinearity equation (Testsu Ono, 1999). Also, another epipolar geometry of linear pushbroom scanner system is recently established by Habib(2002). He reported that the epipolar geometry of linear push broom satellite image is realized by parallel projection based on 2D affine models. Here, in this paper, we compared the Ono's method with Habib's method. In addition, we proposed a method that generates epipolar resampled images. For the experiment, IKONOS stereo images were used in generating epipolar images.

  • PDF

ENHANCEMENT OF VEHICLE STABILITY BY ACTIVE GEOMETRY CONTROL SUSPENSION SYSTEM

  • Lee, S.H.;Sung, H.;Kim, J.W.;Lee, U.K.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.303-307
    • /
    • 2006
  • This paper presents the enhancement of vehicle stability by active geometry control suspension(AGCS) system as the world-first, unique and patented chassis technology, which has more advantages than the conventional active chassis control systems in terms of the basic concept. The control approach of the conventional systems such as active suspensions(slow active, full active) and four wheel steering(4WS) system is directly to control the same direction with acting load to stabilize vehicle behavior resulting from external inputs, but AGCS controls the cause of vehicle behaviors occurring from vehicle and thus makes the system stable because it works as mechanical system after control action. The effect of AGCS is the remarkable enhancement of avoidance performance in abrupt lane change driving by controlling the rear bump toe geometry.

Development of Automated Analysis System for Model Plane Engine Using Fuzzy Knowledge Processing

  • Lee, Joon-Seong;Lee, Shin-Pyo
    • 한국지능시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.171-176
    • /
    • 2002
  • This paper describes a new automated analysis system for model plane engine. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes, ANSYS, and one of commercial solid modelers, Designbase, The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of plane engine to be analyzed, i.e. deformation analysis, thermal analysis and so on. The FE models are then automatically analyzed by the FE analysis code. Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns, the assignment of material properties and boundary conditions onto the geometry model are only the interactive processes to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a personal computer environment. The proposed analysis system is successfully applied to evaluate a model plane entwine.