• Title/Summary/Keyword: system composition module

Search Result 63, Processing Time 0.021 seconds

Development of Rotational Type of Wheel-Based Electromagnetic Induction Energy Harvester by Using Orthogonal Array (직교 배열표를 이용한 휠 기반 회전형 전자기 유도 방식 에너지 하베스터 개발)

  • Park, Hyunchul;Moon, Yongjun;Kwon, Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.125-130
    • /
    • 2013
  • According to the law revision of TPMS mounting obligations in Korea, researches about energy harvester which is the alternative of the battery are actively performed by many groups. Because WSN (Wireless Sensor Network) has the proposition of "Install and forget" and the power supplier also has the same performance as the vehicle's lifetime. In this paper, electromagnetic induction type of energy harvester through the relative motion between the rotating wheel and the fixed brake disc is introduced by using the most efficient source as the rotating motion in the view of vehicle's mechanism. The coil on the wheel and the permanent magnet at the brake disc are arranged in several ways. These various arrangements are the number of coil turns are consisted of design variables. By using the orthogonal array to reduce the experimental cost, the optimal composition is verified through the experiment. Finally the validity of the module is considered by measuring the level of storable electrical energy.

Development of a GIS-Based Basin Water Balance Analysis Model (GIS 기반의 유역물수지 분석모형 개발)

  • Hwang, Eui-Ho;Kim, Kye-Hyun;Park, Jin-Hyeog;Lee, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.34-45
    • /
    • 2004
  • Existing Semangeum's water balance analysis simplifies whole basin to single basin and achieved volume of effluence that produce by Kajiyama way to foundation. But Semangeum is complicated and various rice-wine strainer supply system. And there is difficulty to apply as elastic when water balance element is changed at free point. Divided to unit possession station for suitable water balance analysis model application to Semangeum in this study. And developed basin water balance model of GIS base that can do details analysis is bite about development and transfer of an appropriation in the budget of basin water resources. Achieved study including abstraction and concept design that use UML (unified modeling language) diagram for details analysis, stream network composition for rice-wine strainer supply system application, preprocessing of GIS base and postprocessing module development, model revision and verification etc. Support of this water balance analysis model is available to establish efficient water resources administration plan through outward flow process analysis of water resources. And support is considered to be possible in more convenient and, reasonable water resources administration way establishment by minimizing manual processing in systematic water resources government official to user and support diversified analysis system.

  • PDF

A Study of the Effect of the Permeability and Selectivity on the Performance of Membrane System Design (분리막 투과도와 분리도 인자의 시스템 설계 효과 연구)

  • Shin, Mi-Soo;Jang, Dongsoon;Lee, Yongguk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.656-661
    • /
    • 2016
  • Manufacturing membrane materials with high selectivity and permeability is quite desirable but practically not possible, since the permeability and selectivity are usually inversely proportional. From the viewpoint of reducing the cost of $CO_2$ capture, module performance is even more important than the performance of membrane materials itself, which is affected by the permeance of the membrane (P, stagecut) and selectivity (S). As a typical example, when the mixture with a composition of 13% $CO_2$ and 87% of $N_2$ is fed into the module with 10% stage cut and selectivity 5, in the 10 parts of the permeate, $CO_2$ represents 4.28 parts and $N_2$ represents 5.72 parts. In this case, the $CO_2$ concentration in the permeate is 42.8% and the recovery rate of $CO_2$ in this first separation appears as 4.28/13 = 32.9%. When permeance and selectivity are doubled, however, from 10% to 20% and from 5 to 10, respectively, the $CO_2$ concentration in the permeant becomes 64.5% and the recovery rate is 12.9/13 = 99.2%. Since in this case, most of the $CO_2$ is separated, this may be the ideal condition. For a given feed concentration, the $CO_2$ concentration in the separated gas decreases if permeance is larger than the threshold value for complete recovery at a given selectivity. Conversely, for a given permeance, increasing the selectivity over the threshold value does not improve the process further. For a given initial feed gas concentration, if permeance or selectivity is larger than that required for the complete separation of $CO_2$, the process becomes less efficient. From all these considerations, we can see that there exists an optimum design for a given set of conditions.