• 제목/요약/키워드: system air conditioner

검색결과 407건 처리시간 0.024초

인간 적응형 가전기기를 위한 거주자 심박동 기반 신체활동량 추정 (Metabolic Rate Estimation for ECG-based Human Adaptive Appliance in Smart Homes)

  • 김현희;이경창;이석
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.486-494
    • /
    • 2014
  • Intelligent homes consist of ubiquitous sensors, home networks, and a context-aware computing system. These homes are expected to offer many services such as intelligent air-conditioning, lighting control, health monitoring, and home security. In order to realize these services, many researchers have worked on various research topics including smart sensors with low power consumption, home network protocols, resident and location detection, context-awareness, and scenario and service control. This paper presents the real-time metabolic rate estimation method that is based on measured heart rate for human adaptive appliance (air-conditioner, lighting etc.). This estimation results can provide valuable information to control smart appliances so that they can adjust themselves according to the status of residents. The heart rate based method has been experimentally compared with the location-based method on a test bed.

차압식 벤튜리콘 유량계에 대한 유동해석 (Numerical analysis of the differential pressure venturi-cone flowmeter)

  • 윤준용;맹주성;이정원
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.714-720
    • /
    • 1998
  • The differential pressure venturi-cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turn-down ratio, low headless, short installation pipe length requirement, and etc. Like other differential pressure flowmeters, the venturi-cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we used Reynolds-averaged Wavier-Stokes equations and k-$\omega$ turbulence model. The equations were fully transformed into the computational domain, the pressure-velocity coupling was made through SIMPLER algorithm, and the equations were discretized using finite analytic solutions of the liberalized equations(Finite Analytic Method). To control the separation phenomenon on the cone surface, we proposed a new shape of cone, and analyzed the flowfield in the new flowmeter system, and found the improvement on the performance of the new cone flowmeter.

  • PDF

R1234yf와 R1234yf/R134a의 자동차 에어컨 작동 조건에서의 성능 평가 (Performance of R1234yf and R1234yf/R134a Mixture under Mobile Air-conditioner Operating Conditions)

  • 박기정;이요한;최대성;정동수
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.837-844
    • /
    • 2010
  • In this study, performance of R1234yf and R1234yf/R134a mixture is measured on a heat pump bench tester in an attempt to substitute R134a used widely in mobile air conditioners (MACs). The bench tester is equipped with a open type compressor providing a nominal capacity of 3.5 kW. All tests are conducted under the summer cooling and winter heating conditions of 7/4 $5^{\circ}C$ and $-7/41^{\circ}C$ in the evaporator and condenser, respectively. For R1234yf/R134a mixture, measurements are made at 5%, 10%, and 15% of R134a by mass. Test results show that the coefficient of performance (COP) and capacity of R1234yf are up to 2.7% and 4.0% lower than those of R134a, respectively. For R1234yf/R134a mixture, the COP and capacity are up to 3.9% lower and 3.6% higher than those of R134a. For R1234yf and R1234yf/R134a mixture, the compressor discharge temperature is $4.1{\sim}6.7^{\circ}C$ lower than that of R134a while the amount of charge is reduced up to 11% as compared to R134a. 90%R1234yf/10%R134a is a better refrigerant than pure R1234yf in that it is less flammable and more compatible with existing R134a system. Based upon the results, it is concluded that R1234yf and R1234yf/R134a mixture are long term environmentally friendly solutions to mobile air-conditioners due to their excellent environmental properties with acceptable performance.

동 파이프 성형 시 치수 변화 및 배관 시스템의 기계적 특성 변화 (Changes in Dimension and Mechanical Characteristics of Copper Pipe System during Pipe Processing)

  • 최제민;김수민;채수원
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.615-622
    • /
    • 2014
  • Copper pipes have been widely used as components of System Air-Conditioner due to high thermal conductivity. This system consists of 150 pipes, which are approximately 10m long in total. Dimensional changes occur during pipe processing such as expansion, reduction and bending. This processing induces changes in length of pipes and makes dimensional differences from original pipes. The summation of the differences of pipes components leads to make huge cumulative dimensional differences. The cumulative differences can cause serious problems such as crack, refrigerant leakage. However the differences have not been considered so far. To satisfy target quality of the system, it is essential to predict and calibrate the differences. In this paper, the changes in dimension were predicted using FEM and it was found that cumulative differences could cause indesirable stress during assembly process. As a result, dimensional differences or indesirable stress could be reduced using the proposed method.

차량 내부 환경 제어용 무선 자동화 시스템 구현 (Implementation of Wireless Automatic Control System for Vehicle Interior Environment)

  • 조해성;조주필
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.287-291
    • /
    • 2010
  • 본 논문에서는 차량 자동화 구현을 위한 센서네트워크 기반의 차량용 자동화 시스템을 설계 및 구현하였다. 이를 위하여 자동차내부의 각종 센서로부터 Zigbee 센서 망을 이용하여 무선으로 각종 센싱 데이터를 수집한 후 모니터 프로그램에서 이를 분석한다. 그리고 분석된 데이터를 무선 단말기와 인터페이스 시켜 차량의 상태 정보를 한눈에 운전자가 한눈에 파악할 수 있도록 하였다. 또한, 센서 네트워크 기반으로 온도센서, 습도센서 그리고 조도센서 등을 모니터링하고 이들 데이터를 기반으로 히터, 에어콘 및 차량의 실내등을 자동 구동시키는 차량 내 온/습도 자동제어 및 조도 자동조절기를 구현하였다.

인버터 에어컨의 입력 역률 개선 및 하모닉 저감에 관한 연구 (A Study on the Input Power Factor Correction & THD Reduction of Inverter Airconditioner)

  • 김성환;이인호;유지윤;김태덕;배영돈;박윤서
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.235-237
    • /
    • 1995
  • The demands of minimizing the reactive power and reducing. the current harmonics are increasing nowadays. The inverter airconditioner needs high power and it operates with wide load range. Conventionally, ah huge LC passive filter is used in airconditioner to improve the P.F and to reduce current harmonics which doesn't gives good results. In this paper, a design of active power factor correction(PFC) circuit for inverter air conditioner is described. To improve the P.F and to reduce the THD, an average current controlled active PFC is designed and tested. Experimental results show that the developed system achieves almost unity P.F and low THD for all load range.

  • PDF

AWS IoT 와 MQTT 기반 스마트 홈 시스템 구현 (Implementation of Smart Home System based on AWS IoT and MQTT)

  • 정인환;황기태;이재문
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.7-12
    • /
    • 2022
  • 본 논문은 AWS IoT 서비스 및 MQTT 기반 스마트 홈 시스템의 구현 사례를 소개한다. 본 연구에서 구현한 스마트 홈 시스템은 온도와 습도를 모니터링 할 수 있고 그에 따라 에어컨 난방 등을 수동 혹은 자동으로 온도 조절이 가능하며 카메라로 방문자를 확인하고 도어록을 원격으로 제어 할 수 있다. 구현된 스마트홈 시스템은 아두이노를 이용하여 도어록, 난방, 전등 및 에어컨을 제어하며 수집된 데이터와 제어정보는 AWS IoT 서비스를 이용하여 관리한다. 본 연구에서는 사용자가 원격에서 IoT 기기들을 제어할 수 있도록 안드로이드 앱을 개발하였으며, 앱과 AWS IoT 서버 및 아두이노 사이의 데이터 통신 및 제어를 위해 MQTT 프로토콜을 이용하였다. 또한 센서 및 기기들을 추가할 수 있도록 확장성을 갖는 AWS IoT 서비스 기반으로 구현되었다.

LES에 의한 RAC 실내기의 유동장 개선에 관한 전산유동해석 (Computational Flow Analysis on the Flow Field Improvement of an Indoor RAC by LES)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제16권3호
    • /
    • pp.29-36
    • /
    • 2012
  • The computational flow analysis using LES technique was introduced to investigate the flow field improvement of an indoor RAC chassis consisting of a rear-guider, a stabilizer and a cross-flow fan. This unsteady three-dimensional numerical analysis was carried out by the commercial SC/Tetra software. The edge blocks were adopted in this study as a tool for the flow field improvement of an indoor RAC. In view of the results so far achieved, the edge blocks cause the center of an eccentric vortex to be stable along all length of a cross-flow fan, and then, the static pressure and the velocity vector show a stable distributions. In consequence, because the edge blocks eliminate a reverse flow near the edges, an exhausting flow becomes to be stable and uniform.

ARM Cortex-M4 마이크로컨트롤러를 사용한 유도전동기의 저가형 벡터제어 인버터 설계 (The Design of Low-Cost Vector-Controlled Inverter for Induction Motor Using ARM Cortex-M4 Microcontroller)

  • 김동기;윤덕용
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.816-821
    • /
    • 2013
  • 본 논문은 ARM Cortex-M4 마이크로컨트롤러를 사용하여 3상 유도전동기용의 저가형 벡터제어 인버터를 설계하는 방법을 제안한다. 이 MCU는 냉장고, 에어컨, 세탁기와 같은 가전제품을 제어하기 위하여 기존의 값비싼 DSP 소자를 대신할 수 있다. 본 논문에서는 전동기 제어에 필요한 Cortex-M4의 주요 기능들을 정리하고, 이를 사용하여 벡터제어 인버터를 설계하는 방법을 기술한다. 실험용 벡터제어 인버터를 설계 제작하여 200[W]의 3상 유도전동기에 적용하였고, 이를 사용한 실험 결과는 기존의 TMS320F28335 DSP와 유사한 수준의 제어 성능을 보였다.

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.