• Title/Summary/Keyword: synthetic natural gas

Search Result 78, Processing Time 0.031 seconds

Spectroscopic Characteristics of synthetic and natural emerald by heat treatment (열처리에 따른 합성과 천연 에메랄드의 분광특성분석)

  • Hwoang, Hye-Kyung;Ahn, Yong-Kil;Seo, Jin-Gyo;Park, Jong-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • The spectroscopic characteristics of synthetic and natural emeralds were investigated by UV-Vis and FTIR spectroscopy before and after heat treatment. The Mo and Co for synthetic flux and C1 for synthetic hydrothermal emeralds have been detected by X-ray fluorescence analysis. In the region of UV-Visible, the absorption of emerald from Colombia was generally increased after the heat treatment. The peak which related to C1 component in the $3000-2600cm^{-1}$ was shown in the hydrothermal synthetic emeralds by FTIR spectroscopy. The $2358cm^{-1}$ peak which originates from $CO_2$ was decreased after the heat treatment in the natural emerald. This was corresponded with the changes of gas element after heat treatment.

Determination of hormonal active compounds in meat (육류 식품중 호르몬 성분의 분석)

  • Seo, Jungju
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.526-534
    • /
    • 2008
  • To determine the trace level of synthetic and natural hormones in food, the improvement of official analytical method and new development of simultaneous determination of hormones were established. On the basis of developed analytical method, the background level of natural hormones and distribution of residual hormones were monitored in meat. Target hormones were six natural hormones such as estrogens ($17{\beta}$-estradiol, $17{\alpha}$-estradiol, estrone), androgens ($17{\beta}$-testosterone, $17{\alpha}$-testosterone), and gestagens (progesterone) and three synthetic hormones such as DES, zeranol, and taleranol. These hormones were analyzed by gas chromatographymass spectrometry. Newly developed multi-residue analysis method was applied for meat sample which were collected from market in the capital region and monitored the presence of residues of synthetic and natural steroid hormones. No residue of synthetic hormones were detected and endogenous level of progesterone was detected in cattle, pig and liver samples tested.

Determination of Capsaicin, Dihydrocapsaicin and Nonivamide by Gas Chromatography (기체크로마토그래피에 의한 캡사이신, 디하이드로캡사이신 및 노니바마이드(PAVA)의 정량)

  • Kim, Sang-Soo;Yoon, Joong-Soo
    • Journal of the Health Care and Life Science
    • /
    • v.9 no.1
    • /
    • pp.141-146
    • /
    • 2021
  • Determination of capsaicin, dihydrocapsaicin and nonivamide in pungent liquids of self-defense spray were studied. The nonivamide having almost same spicy taste with capsaicin have been containing a few amounts in natural products, it had called as synthetic capsaicin or PAVA, have used to flavorings for foodstuffs and incapacitating agents of riot controls. Nowadays, it has been occasionally found that the quality controls of a self-defense sprays were not properly due to flood of illegal self-defense sprays. Thus, the simple analytical method with gas chromatography is developed, it is identified whether the products which have contained synthetic capsaicin were marked like natural materials as well as the pungent ingredients in it obeyed with permissible concentration to human or not was investigated. Finally, the pungent components and amounts in some kinds of self-defense spray were investigated.

A simulation study on synthesis gas process optimization for GTL (Gas-to-Liquid) pilot plant (GTL 합성유 제조용 파일럿 플랜트 최적 운전 변수 도출을 위한 합성가스 공정 시뮬레이션 연구)

  • Kim, Yong Heon;Bae, Ji Han;Park, Myoung Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.74.2-74.2
    • /
    • 2011
  • A simulation study on synthesis gas process in GTL process was carried out in order to find optimum operation conditions for GTL (gas-to-liquid) pilot plant design. Optimum operating conditions for synthesis gas process were determined by changing reaction variables such as feed temperature and pressure. During the simulation, overall synthesis process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS (Redlich-Kwong-Soave) equation. The effect of temperature and pressure on synthesis gas process $H_2$/CO ratio were mainly examined. Simulation results were also compared to experimental results to confirm the reliability of simulation model. Simulation results were reasonably well matched with experimental results.

  • PDF

A Study on the Combustion Characteristics with Hydrogen Contents of SNG Fuel in Low-Swirl Combustor (저선회 연소기에서 합성천연가스(SNG) 연료의 수소함량에 따른 연소 특성 연구)

  • JEONG, HWANGHUI;KANG, KIJOONG;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • This paper describes experimental results on combustion characteristics with hydrogen contents of synthetic natural gas (SNG) in low swirl combustor. To investigate the effect of hydrogen contents for premixed SNG flame, stability map, CH chemiluminescence images, flame spectrum analysis and emission performances were measured. In the results, as the hydrogen content was increased, the lean flammable limit was expanded and the flame length was decreased. The hydrogen contents affected the flame liftoff height, and it has different tendency according to the equivalence ratio and flame shape. The change of height and length of flame according to hydrogen contents is caused by the fast burning velocity of hydrogen, which can be confirmed by GRI 3.0 reaction mechanism in PREMIX code. The intensity of $OH^*$, $CH^*$ and $C_2^*$ was confirmed by spectrum analysis of flame. As a result, the $CH^*$ intensity was not significantly different according to hydrogen content. The increase of hydrogen contents influenced positively CO and NOx emission performances.

Laminar Burning Velocity Measurement of SNG/Air Flames - A Comparison of Bunsen and Spherical Flame Method - (SNG/공기 화염의 층류 연소속도 측정 - 분젠과 구형 화염법 비교 -)

  • KIM, DONGCHAN;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.737-746
    • /
    • 2016
  • This article describes a comparison on laminar burning velocity measured by Bunsen and spherical flame methods of synthetic natural gas (SNG) with various composition of hydrogen. In this study, the laminar burning velocity measurements were employed by Bunsen burner and cylindrical constant combustor at which flame images were captured by Schlieren system. These results were also compared with numerical based on CHEMKIN package with GRI 3.0, USC-II and UC Sandiego mechanism. In case of spherical flames, the suitable flame radius range and theoretical models were verified using the well-known previous results in methane/air flames. As an experimental condition, hydrogen content of SNG was adjusted 0% to 11%. Equivalence ratios of Bunsen flames were adjusted from 0.8 to 1.6. On the other hand, those of spherical flames were adjusted from 0.6 to 1.4, relatively. From results of this study, the both laminar burning velocities measured in Bunsen and spherical flame methods were resulted in similar tendency. As the hydrogen content increased, the laminar burning velocity also increased collectively. Laminar burning velocity of measured SNG-air flames was best coincided with GRI 3.0 mechanism by comparison of reaction mechanisms.

SNG Production from CO2-Rich Syngas in a Pilot Scale SNG Process (파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Kim, Jin-Ho;Kim, Hyo-Sik;Yoo, Young-Don;Kim, Jun-Woo;Koh, Dong-Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.420-424
    • /
    • 2019
  • In SNG (synthetic natural gas) process by proposed RIST(Research Institute of Industrial Science & Technology)-IAE(Institute for Advanced Engineering) (including three adiabatic reactors and one isothermal reactor), the methanation reaction and water gas shift (WGS) reaction take place simultaneously, and the supply of steam with syngas might control the temperature in catalyst bed and deactivate the catalyst. In this study for development of SNG process, the characteristics of the methanation reaction with a Ni-based catalyst by prepared RIST and using a low $H_2/CO$ mole ratio (including $CO_2$ 22%) are evaluated. The operating conditions ($H_2O/CO$ ratio of the $1^{st}$ adiabatic reactor, operating temperature range of $4^{th}$ isothermal reactor, etc.) were reflected the results from previous studies and in the same condition a pilot scale SNG process is carried out. As a results, the pilot scale SNG process is stable and the CO conversion and $CH_4$ selectivity are 100% and 96.9%, respectively, while the maximum $CH_4$ productivity is $660ml/g_{cat}{\cdot}h$.

Review on the water-gas shift process for a coal SNG project (석탄 SNG 생산설비의 수성가스전환 공정 분석)

  • Kim, Youngdo;Shin, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF

Experimental Study on the NOx Emission Characteristics of Low Calorific Value(LCV) Gas Fuel at Premixed Combustion Condition (저 발열량 가스 연료의 예혼합 연소시 NOx 발생 특성에 관한 실험적 연구)

  • Kim, Yong-Chul;Lee, Chan;Yun, Yong-seung
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.23-29
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value (LCV) coal derived gas fuel. Synthetic LCV fuel gas is produced by mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas. The syngas mixture is fed to and burnt with air on flat flame burner. With the variation of the equivalence ratio for specific syngas fuel, flame behaviors are observed to identify the flame instability due to blow-off or flashback and to define stable combustion range. Measurements of NOx content in combustion gas are made for comparing thermal and fuel NOx from the LCV syngas combustion with those of the natural gas one. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique, and its effects on thermal and fuel NOx production are discussed.

  • PDF

On the preparation of iron pyrite from synthetic and natural targets by pulsed electron deposition

  • Al-Shareeda, Omar;Henda, Redhouane;Pratt, Allan;McDonald, Andrew M.
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • We report on the preparation of iron pyrite ($FeS_2$) using pulsed electron ablation of two targets, namely, a mixture of sulfur and iron compound target, and a natural iron pyrite target. Thin films of around 50 nm in thickness have been deposited on glass substrates under Argon background gas at 3 mTorr, and at a substrate temperature of up to $450^{\circ}C$. The thin films have been analyzed chemically and examined structurally using x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and visible Raman spectroscopy. The morphology and thickness of the films have been assessed using scanning electron microscopy (SEM) and visible spectroscopic reflectance. The preliminary findings, using a synthetic target, show the presence of iron pyrite with increasing proportion as substrate temperature is increased from $150^{\circ}C$ to $250^{\circ}C$. The data have not shown any evidence of pyrite in the deposited films from a natural target.