• Title/Summary/Keyword: synthetic leather

Search Result 45, Processing Time 0.02 seconds

Measurement and Evaluation of Flash Point for the DMF Contained Organic Solvent Mixtures (DMF함유 혼합 유기용제에 대한 인화점의 측정과 평가)

  • Lee, Jung-Suk;Han, Ou-Sup;Lee, Keun-Won
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.9-15
    • /
    • 2019
  • The flash points of DMF based organic solvent mixtures used in the synthetic leather manufacturing process were measured. The test group was composed of seven types of solvent mixtures, which included DMF, toluene, and MEK. Each flash point was tested according to the international standard test methods of KS M 2010. The flash points were then predicted using some prediction models and compared with the measured data. From the analysis results, the binary mixtures with a mole ratio of less than approximately 0.7 showed that the measured values were under 25 ℃. This showed that the expectation for the flammable risk lowering effects due to the mixing of high flash point materials was reduced. In addition, the predicted values were evaluated using the average absolute deviation (A.A.D). The results showed that the Le Chatelier's models had an "A.A.D" of 1.95 ℃ and were the closest to the measured values.

Effects of Dimethylformamide on Lipid Peroxide Level and Activity of Superoxide Dismutase in Human Serum (Dimethylformamide가 사람 혈청의 과산화지질 농도와 Superoxide dismutase 활성도 변화에 미치는 영향)

  • 김기웅;최정근;김태균;송문기;고경선;손남석;조영숙;김소연;김희곤
    • Toxicological Research
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • The variation in the enzyme activities of human liver usually represents the particular physiological conditions of each individuals. Thus, we investigated the variation in the activities of SOD, HR and LPO of (1) non-exposed workers (56 subjects), and (2) exposed workers to DMF (43 subjects) in synthetic leather process. Serum levels of enzyme activities of exposed workers (AST:$30.26{\pm}20.041$U/L, ALT:$32.72{\pm}23.393$U/L, GGT:$28.47{\pm}18.635$ U/L, ALP:$81.77{\pm}34.879$ U/L)were slightly higher than those in nonexposed workers (AST:$24.00{\pm}9.441$ U/L, ALT:$23.89{\pm}18.305$U/L, GGT:$21.95{\pm}17.970$U/L, ALP:$70.84{\pm}24.678$U/L), but only the level of ALT was statistically significant (p< 0.05). Serum levels of LDH, TRF and CHOL in non-exposed workers were slightly higher than those of exposed workers. However, they were not statistically significant (p > 0.05). Serum levels of HR and LPO of the exposed workers appeared to be reduced, but not those of the non-exposed workers. The SOD activities of exposed workers were also slightly higher than those of non-exposed workers, but the results were not statistically significant (p > 0.05). The level of HR was increased with age, but the SOD level was not. These results suggest that the intermittent exposure to DMF at time-weighted average (TWA) level (10 ppm/$m^3$) has affected on the activities of enzymes such as AST, ALT, TRF, but not on the generation of HR, activity of SOD. However, if high dose of DMF was used, there would be severe effects for the generation of HR and LPO.

  • PDF

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.

Utilization of Industrial Wastes for Organic Fertilizer Use (유기질비료(有機質肥料) 자원(資源)으로서의 산업폐기물(産業廢棄物))

  • Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.3
    • /
    • pp.195-206
    • /
    • 1979
  • Where the industrial waste is increasing in number of kind and in quantities by the industrialization and population increases, the pollution problem is not only national but grobal question of the day. This paper is trying to invite attentions by the people who are working in both sector-natural sciences and industries in reviewing limited reports and materials. 1. By the chemical evaluation of over 20 industrial waste produced in Korea, potential wastes for commercial fertilizer would be wastes from alcohol fermantation, beer brewery, leather processing, synthetic fiber, and coffee grounds. 2. The composition of city waste is differ from other countries and sludge cake from human feces processing is promising one in the organic matter and phosphate content particularly. However, the content of heavy matals, specific order, and availability of phosphate are the bottle-neck for the development. 3. There is one commercial fertilizer from industrial waste in the market. It is very reasonable in the content of nitrogen and organic matter, and its formulation and responeses on crops. 4. Discussions were also given on the general problems in processing and marketing of fertilizers from industrial waste, however, scientists and industrial owners have to pay more attention on the development of fertilizers from tire industrial wastes because of vital environmental protection view-point.

  • PDF

Removal Properties of Methylene Blue using Biochar Prepared from Street Tree Pruning Branches and Household Wood Waste (가로수 전정가지 및 생활계 폐목재를 이용하여 제조한 바이오차의 Methylene Blue 흡착특성)

  • Do, Ji-Young;Kim, Dong-Su;Park, Kyung-Chul;Park, Sam-Bae;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.13-22
    • /
    • 2022
  • In order to improve water quality of the water system contaminated with dyes, biochars prepared using discarded waste resources were applied in this study. Biochars with a large specific surface area were manufactured using street tree pruning products or waste wood, and were applied to remove an organic dye in synthetic water. Biochars were made by pyrolysis of typical street tree porch products (Platanas, Ginkgo, Aak) and waste wood under air-controlled conditions. Methylene blue (MB), which is widely used in phosphofibers, paper, leather, and cotton media, was selected in this study. The adsorption capacity of Platanas for MB was the highest and the qmax value obtained using the Langmuir model equation was 78.47 mg/g. In addition, the adsorption energy (E) (kJ/mol) of MB using the Dubinin-Radushkevich (D-R) model equation was 4.891 kJ/mol which was less than 8 kJ/mol (a criteria distinguishing physical adsorption from chemical adsorption). This result suggests a physical adsorption with weak interactions such as van der Waals force between the biochar and MB. In addition, the physical adsorption may resulted from that Platanas-based biohar has the largest specific surface area and pore volume. The ∆G value obtained through the adsorption experiment according to temperature variation was -3.67 to -7.68, which also suggests a physical adsorption. Considering these adsorption results, the adsorption of MB onto Platanas-based biochar seems to occur through physical adsorption. Overall, it was possible to suggest that adsorption capacity of the biochr prepared from this study was equal to or greater than that of commercial activated carbon reported in other studies.