• Title/Summary/Keyword: synthetic geometry

Search Result 74, Processing Time 0.024 seconds

GEOCODING OF SAR IMAGE USING THE ORBIT AND ATTITUDE DETERMINATION OF RADARSAT (RADARSAT 위성의 궤도결정과 자세결정을 이용한 SAR 영상의 자리매김)

  • 소진욱;최규홍;원중선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.183-196
    • /
    • 1998
  • The Synthetic Aperture Radar(SAR) image and the Digital Elevation Model(DEM) of an target area are put into use to generate three dimensional image map. An method of image map generation is explained. The orbit and attitude determination of satellite makes it possible to model signal acquisition configuration precisely, which is a key to mapping image coordinates to geographic coordinates of concerned area. An application is made to RADARSAT in the purpose of testing its validity. To determine the orbit, zero Doppler range is used. And to determine the attitude, Doppler centroid frequency, which is the frequency observed when target is put in the center of antenna's view, is used. Conventional geocoding has been performed on the basis of direct method(mapping image coordinates to geographic coordinates), but in this reserch the inverse method(mapping from geographic coordinates to image coordinates) is taken. This paper shows that precise signal acquisition modeling based on the orbit and attitude determination of satellite as a platform leads to a satellite-centered accurate geocoding process. It also shows how to model relative motion between space-borne radar and target. And the relative motion is described in ECIC(earth-centered-initial coordinates) using Doppler equation and signal acquisition geometry.

  • PDF

A Study on the Emulsion Polymerization of Methyl Methacrylate (Methyl Methacrylate의 Emulsion Polymerization에 關한 硏究)

  • Lee, Hyung-Kyoo;Min, Tae-Ik
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.4-11
    • /
    • 1968
  • With the selected emulsifiers for the emulsion polymerization of methyl methacrylate, the HLB of the emulsifier in the reaction system has been studied on the effect of the ratio of tetra sodium-N-(1,2-dicarboxy ethyl)-N-octadecyl sulfosuccinamate(Aerosol 22) to polyethylene glycol nonyl phenyl ether (Noigen EA 160), and also sodium lauryl sulfate(Quolac EX-UB), Disodium-N-octadecyl sulfosuccinamate (Aerosol 18) and Aerosol 22 as emulsifiers having various hydrophilic groups in the molecules have been studied. Results are as follows; 1) The viscosity of the emulsions and the molecular weight of the polymers have maximum values at a constant HLB value of emulsifiers, but their stabilities show minimum point at the value with the titration with the three kinds of mono, bi, tri-valent electrolytes. These results are agreed on the theory of Greth & Wilson in which the properties of polymer emulsions depend upon the HLB system of emulsifiers. 2) The viscosity of the emulsions and the molecular weights of the produced polymers increase more in the case of blending of Aerosol 22 to Noigen EA-160 than of the separate using. 3) The coagulation effects of the divalent electrolytes($ex,\;Ca^{++},\;Zn^{++}$) are contrast to the effects of monovalent($ex,\;Na^+$) and trivalent($ex,\;Al^{+++}$) in the emulsions with Aerosol 18 or Aerosol 22 which have more than two hydrophilic groups. It seems that the stability of the O/W emulsions by electrolytes is directly related to the parameters of surface physical chemistry such as surface geometry of surface chemical constitution of polymer particles.

  • PDF

Verification of Wavefront Inversion Scheme via Signal Subspace Comparison Between Physical and Synthesized Array Data in SAT Imaging (SAR Imaging에서 Physical Array와 합성 Array 신호의 Subspace 비교를 통한 Wavefront Inversion 기법 입증)

  • 최정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.34-41
    • /
    • 1999
  • Unlike the traditional radar system, Synthetic Aperture Radar(SAR) system is capable of imaging a target scene to ceertain degree of cross-range resolution. And this resolution is mainly depends on the size of aperture synthesized. Thus, a good system model and inversion scheme should be developed to actually give effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion schemes for SAR imaging, we used an inversion scheme called wavefront reconstruction which has no approximation in wave propagation analysis, and tried to verify whether the collected data with synthesized aperture actually give the same support as that with physical aperture in the same size. To do this, we performed a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparisons and numerical analysis using Gram-Schmidt procedures have been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry. This result strongly supports the previously proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

Investigation of Properties of Synthetic Microparticles for a Retention and Drainage System

  • Lee, Sa-Yong;Hubbe Martin A.;Park, Sun-Kyu
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.61-66
    • /
    • 2006
  • Over the past 20 years there has been a revolution involving the use of nano or macro size particles as drainage and retention systems during the manufacture of paper. More recently a group of patented technologies called Synthetic Mineral Microparticles (SMM) has been invented and developed. This system has potential to further promote the drainage of water and retention of fine particles during papermaking. Prior research, as well as our on preliminary research showed that the SMM system has advantages in both of drainage and retention compared with montmorillonite (bentonite), which one of the most popular materials presently used in this kind of application. In spite of the demonstrated advantages of this SMM system, the properties and activity of SMM particles in the aqueous state have not been elucidated yet. Streaming current titrations with highly charged polyelectrolytes were used to measure the charge properties of SMM and to understand the interactions among SMM particles, fibers, fiber fines, and cationic polyacrylamide (cPAM) as a retention aid. It was found that pH profoundly affects the charge properties of SMM, due to the influence of Al-ions and the Si-containing particle surface. SEM pictures, characterizing the morphology, geometry and size distribution of SMM, showed an broad distribution of primary particle size. Dilution of SMM mixturee appeared to wash out particles smaller than 100 nm from the surface of larger particles, which themselves appeared to be composed of fused primary particles. DSC thermoporometry was used to measure the size distribution of nanopores within SMM particles.

  • PDF

Ground Moving Target's Velocity Estimation in SAR-GMTI (SAR-GMTI에서 지상이동표적의 속도 추정 기법)

  • Bae, Chang-Sik;Jeon, Hyeon-Mu;Yang, Dong-Hyeuk;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • A ground moving target's velocity estimation algorithm applicable for a SAR-GMTI system using 2 channel displaced phase center antenna(DPCA) is proposed. In this algorithm, we assume target's across-track velocity can be estimated by along-track interferometry (ATI) and present a method to estimate target's along-track velocity. To accomplish this method, we first transform a radar-target geometry in which a moving target has zero velocity via altering a radar velocity such that target's velocity is reflected into it and next manipulate the spectral centers of the subapertures within the synthetic aperture. The validity of the proposed algorithm is demonstrated through simulation results showing the performance of the target's velocity estimation and the enhancement of reconstructed target image quality in terms of resolution and SINR.

A Study on Rotational Motion Compensation Method for Bistatic ISAR Imaging (바이스태틱 ISAR 영상 형성을 위한 회전운동보상 기법 연구)

  • Kang, Byung-Soo;Ryu, Bo-Hyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.670-677
    • /
    • 2017
  • In this paper, we propose a rotational motion compensation(RMC) for bistatic inverse synthetic aperture radar(Bi-ISAR) imaging. For this purpose, geometry-error, caused by changes of bistatic-angle, is removed using known position information of a transmitter, a receiver, and target trajectories. Next, RMC is performed to compensate non-uniform rotational motion error by reformatting radar signal in terms of a newly defined slow time variable that converts non-uniform rotational motion into uniform one. Simulation results using an aircraft model composed of ideal point scatterers validate the efficacy of the proposed Bi-ISAR RMC method.

A Study of the Influence of Void Geometry on Fracture Closure and Permeability (간극의 기하학적 특성이 절리의 수직변형 및 투수성에 미치는 영향에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.304-311
    • /
    • 2002
  • This study reports the influence of vocid geometry on fracture closure and permeability from numerical experiments. As the aperture distributions of rock fractures are characterized by statistical methods, synthetic fractures have successfully been simulated in this way. Based on the generated fracture models, models for fracture closure and flow calculation have been developed. A fracture closure model has been developed by considering the asperity compression and half-space deformation, and flow calculations have been performed using a finite difference method adopting a local cubic law. The results of numerical experiments have shown that the increase in the aperture spatial correlation leads the fracture closure and the decrease in fracture permeability to increase. Also, it has been indicated that there is an implicit relation between fracture normal stiffness and permeability. The importance of this study is to enhance the understanding the hydro-mechanical behavior of fractured rock massed due to engineering projects.

Camera Motion and Structure Recovery Using Two-step Sampling (2단계 샘플링을 이용한 카메라 움직임 및 장면 구조 복원)

  • 서정국;조청운;홍현기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.347-356
    • /
    • 2003
  • Camera pose and scene geometry estimation from video sequences is widely used in various areas such as image composition. Structure and motion recovery based on the auto calibration algorithm can insert synthetic 3D objects in real but un modeled scenes and create their views from the camera positions. However, most previous methods require bundle adjustment or non linear minimization process [or more precise results. This paper presents a new auto' calibration algorithm for video sequence based on two steps: the one is key frame selection, and the other removes the key frame with inaccurate camera matrix based on an absolute quadric estimation by LMedS. In the experimental results, we have demonstrated that the proposed method can achieve a precise camera pose estimation and scene geometry recovery without bundle adjustment. In addition, virtual objects have been inserted in the real images by using the camera trajectories.

3D Effect of Embankment Dam Geometry to Resistivity Data (3차원 댐구조가 전기비저항 자료에 미치는 영향)

  • Cho, In-Ky;Lee, Keun-Soo;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • Resistivity method is a practical and effective geophysical technique to detect leakage zones in embankment dams. Generally, resistivity survey conducted along the crest assumes that the embankment dam has a 2D structure. However, the 3D topography of the embankment distorts significantly resistivity data measured on anywhere of the dam. This study evaluates the influence from 3D effects created by specific dam geometry and effects of water level fluctuations through the 3D finite element modeling technique. Also, a comparison between different locations of survey line are carried out, and topographic correction technique is developed for the resistivity data obtained along the embankment dam. Furthermore, using synthetic resistivity data for an embankment dam model with leakage zone, detectability of leakage zones is estimated through 2.5D inversion.

Deep-Learning Seismic Inversion using Laplace-domain wavefields (라플라스 영역 파동장을 이용한 딥러닝 탄성파 역산)

  • Jun Hyeon Jo;Wansoo Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.84-93
    • /
    • 2023
  • The supervised learning-based deep-learning seismic inversion techniques have demonstrated successful performance in synthetic data examples targeting small-scale areas. The supervised learning-based deep-learning seismic inversion uses time-domain wavefields as input and subsurface velocity models as output. Because the time-domain wavefields contain various types of wave information, the data size is considerably large. Therefore, research applying supervised learning-based deep-learning seismic inversion trained with a significant amount of field-scale data has not yet been conducted. In this study, we predict subsurface velocity models using Laplace-domain wavefields as input instead of time-domain wavefields to apply a supervised learning-based deep-learning seismic inversion technique to field-scale data. Using Laplace-domain wavefields instead of time-domain wavefields significantly reduces the size of the input data, thereby accelerating the neural network training, although the resolution of the results is reduced. Additionally, a large grid interval can be used to efficiently predict the velocity model of the field data size, and the results obtained can be used as the initial model for subsequent inversions. The neural network is trained using only synthetic data by generating a massive synthetic velocity model and Laplace-domain wavefields of the same size as the field-scale data. In addition, we adopt a towed-streamer acquisition geometry to simulate a marine seismic survey. Testing the trained network on numerical examples using the test data and a benchmark model yielded appropriate background velocity models.