International Journal of Computer Science & Network Security
/
제22권6호
/
pp.230-240
/
2022
Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.
Jingxiao Liu;Yujie Wei ;Bingqing Chen;Hae Young Noh
Smart Structures and Systems
/
제31권4호
/
pp.325-334
/
2023
Computer vision-based damage detection enables non-contact, efficient and low-cost bridge health monitoring, which reduces the need for labor-intensive manual inspection or that for a large number of on-site sensing instruments. By leveraging recent semantic segmentation approaches, we can detect regions of critical structural components and identify damages at pixel level on images. However, existing methods perform poorly when detecting small and thin damages (e.g., cracks); the problem is exacerbated by imbalanced samples. To this end, we incorporate domain knowledge to introduce a hierarchical semantic segmentation framework that imposes a hierarchical semantic relationship between component categories and damage types. For instance, certain types of concrete cracks are only present on bridge columns, and therefore the noncolumn region may be masked out when detecting such damages. In this way, the damage detection model focuses on extracting features from relevant structural components and avoid those from irrelevant regions. We also utilize multi-scale augmentation to preserve contextual information of each image, without losing the ability to handle small and/or thin damages. In addition, our framework employs an importance sampling, where images with rare components are sampled more often, to address sample imbalance. We evaluated our framework on a public synthetic dataset that consists of 2,000 railway bridges. Our framework achieves a 0.836 mean intersection over union (IoU) for structural component segmentation and a 0.483 mean IoU for damage segmentation. Our results have in total 5% and 18% improvements for the structural component segmentation and damage segmentation tasks, respectively, compared to the best-performing baseline model.
Visual structural inspections are an inseparable part of post-earthquake damage assessments. With unmanned aerial vehicles (UAVs) establishing a new frontier in visual inspections, there are major computational challenges in processing the collected massive amounts of high-resolution visual data. We propose twin deep learning models that can provide accurate high-resolution structural components and damage segmentation masks efficiently. The traditional approach to cope with high memory computational demands is to either uniformly downsample the raw images at the price of losing fine local details or cropping smaller parts of the images leading to a loss of global contextual information. Therefore, our twin models comprising Trainable Resizing for high-resolution Segmentation Network (TRS-Net) and DmgFormer approaches the global and local semantics from different perspectives. TRS-Net is a compound, high-resolution segmentation architecture equipped with learnable downsampler and upsampler modules to minimize information loss for optimal performance and efficiency. DmgFormer utilizes a transformer backbone and a convolutional decoder head with skip connections on a grid of crops aiming for high precision learning without downsizing. An augmented inference technique is used to boost performance further and reduce the possible loss of context due to grid cropping. Comprehensive experiments have been performed on the 3D physics-based graphics models (PBGMs) synthetic environments in the QuakeCity dataset. The proposed framework is evaluated using several metrics on three segmentation tasks: component type, component damage state, and global damage (crack, rebar, spalling). The models were developed as part of the 2nd International Competition for Structural Health Monitoring.
천해 영역에서 선박과 같은 수상 소음원의 간섭 신호는 정합장처리를 이용한 수중 표적 탐지 및 위치추정 기법 적용에 있어 문제점으로 남아있다. 정지 음원의 경우 수신기공간의 음장에 대한 고유벡터분해를 통해 각 음원 성분을 분리하고 간섭 신호 성분을 제거할 수 있다. 하지만 일반적인 이동 음원 환경에서는 각 신호 성분의 에너지가 수신 음장의 부분공간에 퍼지게 되므로, 고유값 분포 비교만으로 각 신호 성분을 구별하기 어렵게 되거나 하나의 고유벡터에 각 신호성분이 섞이는 경우도 발생한다. 본 논문에서는 수상 음원과 수중 음원 신호의 물리적 특성 차이를 이용한 모드공간 간섭 신호 제거 기법을 제안하였다. 이 기법은 모드-공분산행렬에 대한 고유벡터분해를 통해 간섭 신호 성분을 판별하며, 이 성분들을 부분공간에서 제거함으로써 차폐되었던 표적 신호를 복원하고 위치추정을 가능하게 한다. 이를 모의실험을 통해 확인하고 결과에 대해 논의하였다.
Moonhyung Cho;Jisung Hwang;Sangho Lee;Kilyoung Ko;Wonku Kim;Gyuseong Cho
Nuclear Engineering and Technology
/
제56권7호
/
pp.2690-2697
/
2024
With advancements in machine learning technologies, artificial neural networks (ANNs) are being widely used to improve the performance of gamma-ray spectroscopy based on NaI(Tl) scintillation detectors. Typically, the performance of ANNs is evaluated using test datasets composed of actual spectra. However, the generation of such test datasets encompassing a wide range of actual spectra representing various scenarios often proves inefficient and time-consuming. Thus, instead of measuring actual spectra, we generated virtual spectra with diverse spectral features by sampling from categorical distribution functions derived from the base spectra of six radioactive isotopes: 54Mn, 57Co, 60Co, 134Cs, 137Cs, and 241Am. For practical applications, we determined the optimum counting time (OCT) as the point at which the change in the Kullback-Leibler divergence (ΔKLDV) values between the synthetic spectra used for training the ANN and the virtual spectra approaches zero. The accuracies of the actual spectra were significantly improved when measured up to their respective OCTs. The outcomes demonstrated that the proposed method can effectively determine the OCTs for gamma-ray spectroscopy based on ANNs without the need to measure actual spectra.
지반침하는 인위적인 인간 활동 또는 자연적 현상에 의해 지표면이 가라앉는 현상이다. 멕시코시티는 전세계에서 가장 심각한 지반침하가 발생하는 지역 중 하나로 평가받고 있다. 멕시코시티 지반침하의 원인은 과도한 지하수 채취로서 해당 지역 전체의 물 사용량의 약 70%를 지하수가 차지하고 있다. 범 지구 위성 항법 시스템(Global Navigation Satellite System, GNSS) 또는 수준측량과 같은 전통적인 현장 관측 방법은 지반침하를 정확하게 측정하기 위해 선호되어 왔다. 하지만 GNSS 관측은 매우 높은 시간해상도를 가진 정확한 지표 변위량을 측정할 수 있음에도 불구하고, 넓은 지역에 대한 부분적인 관측 정보를 제공하고 많은 시간과 비용이 요구되는 한계점이 존재한다. 그러나, 인공위성 영상레이더(Synthetic Aperture Radar, SAR)는 주야 조건과 기상상태에 관계없이 높은 공간 해상도의 지표변화 정보를 mm에서 cm 크기의 정밀도로 비교적 낮은 비용으로 관측할 수 있다는 점에서 효과적인 방법으로 제시되고 있다. 본 연구에서는 2007년 2월 11일에서 2011년 2월 22일까지 획득된 ALOS PALSAR L-band 영상레이더를 이용하여 멕시코시티의 지반 침하 시계열을 추정하였다. 본 연구에서는 대표적인 시계열 분석 방법인 고정 산란체 위상간섭기법(persistent scatterer interferometry, PSI)과 small baseline subset (SBAS)을 적용하여 지표 변위의 시계열 결과를 획득하였으며 대기 효과 및 지형 오차를 제거하였다. PSI 및 SBAS 기법을 이용한 분석 결과 최대 지반침하 속도는 각각 -29.5 cm/year, -27.0 cm/year로 나타났다. 또한 연구지역을 지질 공학적 특성에 따라 세 가지 구역으로 분류하여 각 분류에서의 지반 침하속도를 비교한 결과, 단단한 기반암으로 구성된 지역에 비해 압축률이 큰 호수성 퇴적물로 구성된 지역에서 침하가 크게 발생하였다.
운용용으로 사용되는 대부분의 풍속자료는 10 m 기준 고도에서 측정 또는 생산된 자료이다. 이 연구는 이어도 해양과학기지 42.3 m 고도의 옥상 등대에서 측정 중인 풍속을 기준 고도의 풍속으로 변환시켜 국립해양조사원 누리집을 통해 실시간으로 제공하기 위한 사전 연구이다. 이를 위해 2015년에 이어도 기지에서 관측한 풍속을 대표적인 네 종류의 풍속 변환식 - 멱법칙식, 두 종류의 중립벽 로그법칙식(항력계수형, 거칠기 높이형), 대기 안정도 효과를 고려한 벽 로그법칙모델(안정도 고려 거칠기 높이형) -에 적용하였다. 관측 바람을 평가하는데 많이 사용되는 '안정도 고려 거칠기 높이형' 벽 로그법칙모델의 결과와 나머지 풍속 변환식 결과들을 서로 비교하였다. 그 결과 '거칠기 높이형' 벽 로그법칙식과 '안정도 고려 거칠기 높이형' 벽 로그법칙모델 간 편향과 평균 제곱근 편차는 각각 $-0.001m\;s^{-1}$와 $0.122m\;s^{-1}$로 가장 낮아 실시간 현업 운용 측면에서 상호 보완적으로 이 두 변환식을 함께 사용하는 것이 바람직하다는 결론을 도출하였다. 또한 이어도 해역에서 조석에 의한 풍속 관측 고도 변화가 풍속 변환에 미치는 영향을 분석하였다. 이들 변환식에 대한 조석 효과 고려 전후에 대한 비교 실험 결과, 편향과 평균 제곱근 편차는 각각 <$0.0001m\;s^{-1}$와 <$0.012m\;s^{-1}$로 그 영향은 미미하였다. 대기 표면 거칠기 높이를 사용하는 '거칠기 높이형' 벽 로그법칙식과 '안정도 고려 거칠기 높이형' 벽 로그 법칙모델을 이용하여 간편 풍속 변환식의 필수 입력값인 표면 거칠기 높이 값의 적절성에 관해 논의하였으며, 풍속 변환 정확도를 향상시킬 수 있는 표면 거칠기 높이 계산식을 제시하였다. 또한 인공위성 산란계(ASCAT) 풍속자료와 네 종류의 중립 연직 풍속 변환식들의 결과를 비교하여 이들 중 '안정도 고려 거칠기 높이형' 벽 로그법칙모델에서 안정도 항을 뺀 풍속 변환 모델의 정확도가 더 낫다는 결과를 제시하였다. 끝으로 이들 종래 $25m\;s^{-1}$ 이하 풍속에 최적화된 풍속 변환식들로부터 바람 항력계수를 산정 분석하여 강풍(${\geq}33m\;s^{-1}$) 환경에서도 적합한 풍속 변환식으로 개선 필요성에 관해 논의하였다.
질의 최적화기의 중요 기능 중에 하나는 질의가 주어졌을 때 질의 조건을 만족하는 입력 레코드의 개수를 추정하는 일이다. 관계 데이터베이스와 마찬가지로 공간 데이터베이스에서 질의 결과 크기 추정은 입력 데이터 공간을 버켓으로 불리는 작은 영역으로 분할한 후 분할된 영역에 대해서 질의 결과 ■기를 추정한다. 추정의 정확도는 작은 영역으로 분할할 때 근사 계산한 데이터와 실제 데이터의 차이에 의해서 결정되며 이것은 공간 분할을 어떻게 분할하는가에 달려 있다. 기존의 방법은 일차원에 많이 사용되는 데이터의 범위를 균일하게 하는 너비 균등 방법과 빈도수의 합을 일정하게 하는 높이 균등 방법을 공간상의 이차원에 적용한 면적 균등 분할과 개수 균등 분할 방법에 기초를 두고 있다. 본 논문에서 제안한 방법은 공간을 분할할 때 데이터의 범위와 빈도수의 곱을 면적으로 나타낸 후 면적 값의 차이가 가장 큰 순서로 버켓을 정하는 방법으로 데이터 범위와 빈도수를 동시에 고려하여 최적의 버켓을 결정한다. 본 논문에서는 제안한 방법과 기존의 방법을 실제 데이터와 인위데이터를 사용하여 질의 크기, 버켓수, 데이터 개수, 데이터 크기의 변화에 대해서 질의 결과 추정에 대한 정확도를 비교, 분석하여 제안한 방법의 성능 우수성을 확인한다.
각종 농업생산 활동을 통해 배출되는 유기성 부산물을 자원으로 재활용하기 위하여 퇴비화시켜 사용하고 있다. 퇴비화에 의한 재활용은 식물양분의 공급뿐 아니라 토양의 물리, 화학, 생물학적 특성의 개량을 가져올 수 있다. 그러나 국내에서 시판되는 퇴비의 경우 부재료 관리 등에 한계성이 있어, 중금속 등의 유해물질을 함유하거나 미부숙된 비료가 유통되고 있는 실정이다. 본 연구에서는 시판되고 있는 부산물비료의 화학적 특성을 파악하기 위하여 전국 각지에서 생산되는 약 600여종의 시판품 중에서 100 여종을 입수하여 화학성 및 유해물질 함량을 분석하였다. 실험결과 부산물 비료의 중금속 (Cd. Pb, Cu, Cr) 함량과 OM/N의 경우 좌측으로 극편향된 분포를 보여서 집단의 대표 값으로는 평균 보다는 중위값이 적합하다고 판단되었다. 한편 현재의 품질기준을 넘어서는 부산물비료의 출현빈도는 낮았지만, 그 비료들 중의 유해물질 함량은 전체 분석시료의 중위값보다 훨씬 큰 값을 보였다. 이상과 같은 결과로부터 부산물비료 각각의 품질 평가에는 중위값, 우리나라에서 생산되는 부산물비료 전체가 미치는 영향의 파악에는 가중평균값을 이용하는 것이 합리적이라고 판단할 수 있었다.
The recently published and new results on design and fabrication of magnetophotonic crystals of different dimensionality are surveyed. Coupling of polarized light to 3D photonic crystals based on synthetic opals was studied in the case of low dielectric contrast. Transmissivity of opals was demonstrated to strongly depend on the propagation direction of light and its polarization. It was shown that in a vicinity of the frequency of a single Bragg resonance in a 3D photonic crystal the incident linearly polarized light excites inside the crystal the TE- and TM-eigen modes which passing through the crystal is influenced by Brags diffraction of electromagnetic field from different (hkl) sets of crystallographic planes. We also measured the faraday effect of opals immersed in a magneto-optically active liquid. It was shown that the behavior of the faraday rotation spectrum of the system of the opal sample and magneto-optically active liquid directly interrelates with transmittance anisotropy of the opal sample. The photonic band structure, transmittance and Faraday rotation of the light in three-dimensional magnetophotonic crystals of simple cubic and face centered cubic lattices formed from magneto-optically active spheres where studied by the layer Korringa-Kohn-Rostoker method. We found that a photonic band structure is most significantly altered by the magneto-optical activity of spheres for the high-symmetry directions where the degeneracies between TE and TM polarized modes for the corresponding non-magnetic photonic crystals exist. The significant enhancement of the Faraday rotation appears for these directions in the proximity of the band edges, because of the slowing down of the light. New approaches for one-dimensional magnetophotonic crystals fabrication optimized for the magneto-optical Faraday effect enhancement are proposed and realized. One-dimensional magnetophotonic crystals utilizing the second and the third photonic band gaps optimized for the Faraday effect enhancement have been successfully fabricated. Additionally, magnetophotonic crystals consist of a stack of ferrimagnetic Bi-substituted yttrium-iron garnet layers alternated with dielectric silicon oxide layers of the same optical thickness. High refractive index difference provides the strong spatial localization of the electromagnetic field with the wavelength corresponding to the long-wavelength edge of the photonic band gap.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.