• Title/Summary/Keyword: synthesis gas

Search Result 869, Processing Time 0.03 seconds

Numerical simulation for ultrafine SiC powder synthesis using the vapor phase reaction (기상반응을 이용한 SiC 초미분말 합성에 관한 수치모사)

  • 유용호;어경훈;송은석;이성철;소명기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.563-569
    • /
    • 1999
  • The numerical simulation method was utilized to investigate the optimal condition for synthesizing ultrafine SiC powders by using $TMS[Si(CH_3)_4]-H_2$ gaseous mixtures in the horizontal reactor. As a result of the theoretical analysis, the conversion percentage of TMS source was increased with increasing reaction temperature, however, which was decreased with increasing H$_2$flow rate. Though the SiC particles concentration synthesized was decreased with increasing the reaction temperature due to the higher collision rate in the gas phase, they were increased with increasing the H$_2$flow rate and TMS concentration. The SiC particle size showed a tendency to become larger as the reaction temperature and the initial TMS concentration were increased and smaller as the H$_2$ flow rate was increased. The variation of experimental particle size with the reaction temperature, H$_2$flow rate and TMS concentration was agreed with the theoretical results.

  • PDF

Synthesis and Characterization of SnO2 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition Using SnCl4 Precursor and Oxygen Plasma

  • Lee, Dong-Gwon;Kim, Da-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.254-254
    • /
    • 2016
  • Tin dioxide (SnO2) thin film is one of the most important n-type semiconducting materials having a high transparency and chemical stability. Due to their favorable properties, it has been widely used as a base materials in the transparent conducting substrates, gas sensors, and other various electronic applications. Up to now, SnO2 thin film has been extensively studied by a various deposition techniques such as RF magnetron sputtering, sol-gel process, a solution process, pulsed laser deposition (PLD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) [1-6]. Among them, ALD or plasma-enhanced ALD (PEALD) has recently been focused in diverse applications due to its inherent capability for nanotechnologies. SnO2 thin films can be prepared by ALD or PEALD using halide precursors or using various metal-organic (MO) precursors. In the literature, there are many reports on the ALD and PEALD processes for depositing SnO2 thin films using MO precursors [7-8]. However, only ALD-SnO2 processes has been reported for halide precursors and PEALD-SnO2 process has not been reported yet. Herein, therefore, we report the first PEALD process of SnO2 thin films using SnCl4 and oxygen plasma. In this work, the growth kinetics of PEALD-SnO2 as well as their physical and chemical properties were systemically investigated. Moreover, some promising applications of this process will be shown at the end of presentation.

  • PDF

Synthesis of Core-shell Copper nanowire with Reducible Copper Lactate Shell and its Application

  • Hwnag, Hyewon;Kim, Areum;Zhong, Zhaoyang;Kwon, Hyeokchan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.1-430.1
    • /
    • 2016
  • We present the concept of reducible fugitive material that conformally surrounds core Cu nanowire (NW) to fabricate transparent conducting electrode (TCE). Reducing atmosphere can corrodes/erodes the underlying/surrounding layers and might cause undesirable reactions such impurity doing and contamination, so that hydrogen-/forming gas based annealing is impractical to make device. In this regards, we introduce novel reducible shell conformally surrounding indivial CuNW to provide a protection against the oxidation when exposed to both air and solvent. Uniform copper lactate shell formation is readily achievable by injecting lactic acid to the CuNW dispersion as the acid reacts with the surface oxide/hydroxide or pure copper. Cu lactate shell prevents the core CuNW from the oxidation during the storage and/or film formation, so that the core-shell CuNW maintains without signficant oxidation for long time. Upon simple thermal annealing under vacuum or in nitrogen atmosphere, the Cu lactate shell is easily decomposed to pure Cu, providing an effective way to produce pure CuNW network TCE with typically sheet resistance of $19.8{\Omega}/sq$ and optical transmittance of 85.5% at 550 nm. Our reducible copper lactate core-shell Cu nanowires have the great advantage in fabrication of device such as composite transparent electrodes or solar cells.

  • PDF

Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries (고성능 리튬 이차 전지를 위한 황화 주석 저마늄 (SnxGe1-xS) 나노입자 연구)

  • Cha, E.H.;Kim, Y.W.;Lim, S.A.;Lim, J.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Composition-controlled ternary components chalcogenides germanium tin sulfide ($Sn_xGe_{1-x}S$) nanoparticles were synthesized by a novel gas-phase laser photolysis reaction of tetramethyl germanium, tetramethyl tin, and hydrogen sulfide mixture. Subsequent thermal annealing of as-grown amorphous nanoparticles produced the crystalline orthorhombic phase nanoparticles. All these composition-tuned nanoparticles showed excellent cycling performance of the lithium ion battery. The germanium sulfide nanoparticles exhibit a maximum capacity of 1200 mAh/g after 70 cycles. As the tin composition (x) increases, the capacity maintains better at the higher discharge/charge rate. This novel synthesis method of tin germanium sulfide nanoparticles is expected to contribute to expand their applications in high-performance energy conversion systems.

Transfer-free growth of graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Song, Inseol;Jang, Seong Woo;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.109.2-109.2
    • /
    • 2015
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties such as high carrier mobility, chemical stability, and optical transparency. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which need transfer to desired substrates for various applications. However, the transfer steps inevitably induce defects, impurities, wrinkles, and cracks of graphene. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer, which does not require separately deposited catalytic nickel and carbon source layers. The 100 nm NiC layer was deposited on the top of $SiO_2/Si$ substrates by nickel and carbon co-deposition. When the sample was annealed at $1000^{\circ}C$, the carbon atoms diffused through the NiC layer and deposited on both sides of the layer to form graphene upon cooling. The remained NiC layer was removed by using nickel etchant, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. Raman spectroscopy was carried out to confirm the quality of resulted graphene layer. Raman spectra revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Furthermore, the Raman analysis results also demonstrated that gas flow ratio (Ar : $CH_4$) during the NiC deposition and annealing temperature significantly influence not only the number of graphene layers but also structural defects. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Synthesis and electrochemical characterization of nano structure $CeO_2$ (나노 구조의 $CeO_2$ 합성과 전기화학적 특성 분석)

  • Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Choi, Heon-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.462-462
    • /
    • 2009
  • $CeO_2$는 고체 산화물 연료전지 (SOFC, soild oxide fuel cell)의 전해질 재료와 CMP(Chemical Mechanical Polishing) 슬러리 재료, 자동차의 3원 촉매, gas sensor, UV absorbent등 여러 분야에서 사용되고 있다. 본 연구에서는 위의 활용범위 외에 $CeO_2$의 구조적 안정성과 빠른 $Ce^{3+}/Ce^{4+}$의 전환 특성을 이용하여 lithium ion battery의 anode 재료로서 전기화학적 특성을 알아보고자 실험을 실시하였다. $CeO_2$ 합성에 사용되는 전구체인 cerium carbonate의 형상 및 크기, 비표면적과 같은 물리화학적 특성이 $CeO_2$ 분말의 특성에 직접적인 영향을 주기 때문에 전구체의 합성 단계에서 입자의 특성을 조절하였다. 전구체 합성의 출발원료로 cerium nitrate hexahydrate 와 ammonium carbonate를 사용하였고 반응온도 및 농도 등을 변화시켜 입자의 형상 및 결정상을 fiber형태의 orthorombic $Ce_2O(CO_3)_2{\cdot}H_2O$와 구형의 hexagonal $CeCO_3OH$의 세리아 전구체를 합성하였다. 이를 $300^{\circ}C$에서 30분 동안 하소하여 전구체의 입자형상을 유지하는 cubic $CeO_2$를 합성하고 X-ray diffraction, FE-SEM, micropore physisorption analyzer 분석을 통하여 입자의 결정상과 형상, 비표면적 등을 비교 분석하고 $Li/CeO_2$ couple의 충,방전 용량과 수명특성을 비교 분석하여 $CeO_2$의 전기화학적 특성을 알아보았다.

  • PDF

Synthesis of Porous TiO2-SiO2 Particles by Self-assembly of Nanoparticles (나노입자들의 자기조립에 의한 TiO2-SiO2 다공체 제조)

  • Oh, Kyoung Joon;Kim, Sun Kyung;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.7 no.3
    • /
    • pp.79-85
    • /
    • 2011
  • Porous $TiO_2-SiO_2$ particles were synthesized by co-assembly of nanoparticles of $TiO_2$ and $SiO_2$ in evaporating aerosol droplets. Poly styrene latex (PSL) particles were employed as a template of porous particles. Flowrate of dispersion gas, weight ratio of $TiO_2/SiO_2$ and $SiO_2$ concentration in the precursor, and PSL size were chosen as process variables. The morphology, crystal structure, chemical bonding, and pore size distribution were analyzed by FE-SEM, XRD, FT-IR, BET. The morphology of porous $TiO_2-SiO_2$ particles was spherical and the average particle size range were from 1 to $10{\mu}m$. The particles were composed of meso and macro pores. The average particle diameter and pore volume of the as prepared particles were dependant on process variables. It was found that UV-Vis absorption of the porous particles was comparable with pure $TiO_2$ nanoparticles even though $TiO_2/SiO_2$ ratio is low in the porous particles.

Study on the Synthesis of HoN Nanoparticles and Magnetocaloric Effect as Magnetic Refrigerant for Hydrogen Re-Liquefaction (수소재액화를 위한 자기냉매용 HoN 나노분말 합성 및 자기열량효과 연구)

  • Kim, Dongsoo;Ahn, Jongbin;Jang, Sehoon;Chung, Kookchae;Kim, Jongwoo;Choi, Chuljin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.594-601
    • /
    • 2014
  • Rare-earth (RE) nitrides can be used as magnetocaloric materials in low temperature. They exhibit ferromagnetism and have Curie temperature in the region from 6 to 70 K. In this study, Holmium nitride (HoN) nano particles were prepared through plasma arc discharge technique and their magnetocaloric properties were studied. Nitrogen gas ($N_2$) was employed as an active element for arc discharge between two electrodes maintained at a constant current. Also, it played an important role not only as a reducing agent but also as an inevitable source of excited nitrogen molecules and nitrogen ions for the formation of HoN phase. Partial pressure of $N_2$ was systematically varied from 0 to 28,000 Pa in order to obtain single phase of HoN with minimal impurities. Magnetic entropy change (${\Delta}S_m$) was calculated with data set measured by PPMS (Physical Property Measurement System). The as-synthesized HoN particles have shown a magnetic entropy change ${\Delta}S_m$) of 27.5 J/kgK in applied field of 50,000 Oe at 14.2 K thereby demonstrating its ability to be applied as an effective magnetic refrigerant towards the re-liquefaction of hydrogen.

Synthesis of Poly(styrene carbonate) and Preparation of Styrene Carbonate by Thermal Degradation (Poly(styrene carbonate)의 합성 및 열분해에 의한 styrene carbonate의 제조)

  • Lee, Yoon Bae;Shin, Eun Jung;Yoo, Jin Yi
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.133-136
    • /
    • 2008
  • In order to decrease carbon dioxide, one of the green house gas, poly(styrene carbonate) has been synthesized from carbon dioxide and styrene oxide with zinc glutarate as a catalyst. The polymer has been identified as an alternating copolymer by spectroscopic analysis, FT-IR, $^1H$-NMR, and $^{13}C$-NMR. The number average molecular weight ($M_n$) of the polymer is $5.0{\times}10^4g/mol$ and the glass transition temperature ($T_g$) is $88^{\circ}C$ and its melting point ($T_m$) is $240^{\circ}C$. The cyclic carbonate, styrene carbonate, has been obtained by thermal degradation of the polymer via the unzipping mechanism.

Trends in Reports on Climate Change in 2009-2011 in the Korean Press Based on Daily Newspapers' Ownership Structure

  • Lee, Jihye;Hong, Yeon-Pyo;Kim, Hyunsook;Hong, Youngtak;Lee, Weonyoung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Objectives: The mass media play a crucial role in risk communication regarding climate change. The aim of this study was to investigate the trend in journalistic reports on climate change in the daily newspapers of Korea. Methods: We selected 9 daily newspapers in Korea, which according to the ABC Association, represented 77% of newspaper circulation, out of a total of 44 Korean daily newspapers. The collected articles were from 2009 to 2011. All of the articles were sorted into the following 8 categories: greenhouse gas, climate change conventions, sea level rise, Intergovernmental Panel on Climate Change synthesis reports, expected damage and effect, use of fossil fuels, global warming, and mitigation or adaptation. A chi-squared test was done on the articles, which were counted and classified into cause, effect, and measurement of climate change according to the newspaper's majority or minority ownership structure. Results: From the 9 selected newspapers, the number of articles on climate change by month was greatest in December 2009. Generally, the articles vague about climate change (lack of precise data, negative or skeptical tone, and improper use of terminology) were much more common than the articles presenting accurate knowledge. A statistical difference was found based on ownership structure: the majority-owned newspapers addressed the cause of climate change, while the minority-owned newspapers referred more to climate change measurement. Conclusions: Our investigation revealed that generally Korean daily newspapers did not deliver accurate information about climate change. The coverage of the newspapers showed significant differences according to the ownership structure.