• Title/Summary/Keyword: synoptic environments

Search Result 15, Processing Time 0.022 seconds

Synoptic Environment Associated with Extreme Heavy Snowfall Events in the Yeongdong Region (영동 지역의 극한 대설 사례와 관련된 종관 환경)

  • Kwon, Tae-Yong;Cho, Young-Jun;Seo, Dong-Hee;Choi, Man-Gyu;Han, Sang-Ok
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.343-364
    • /
    • 2014
  • This study presents local and synoptic conditions associated with extreme heavy snowfall events in the Yeongdong region, as well as the temporal and spatial variability of these conditions. During the last 12 years (2001~2012), 3 extreme snowfall events occurred in the Yeongdong region, which recorded daily snowfall greater than 50 cm, respectively. In these events, one of the noticeable features is the occurrence of heavy hourly snowfall greater than 10 cm. It was reported from satellite analysis that these heavy snowfall may be closely related to mesoscale convective clouds. In this paper the 3 extreme events are examined on their synoptic environments associated with the developments of mesoscale convective system using numerical model output. These 3 events all occurred in strongly forced synoptic environments where 500 and 300 hPa troughs and 500 hPa thermal troughs were evident. From the analysis of diagnostic variables, it was found in all 3 events that absolute vorticity and cold air advection were dominant in the Yeongdong region and its surrounding sea at upper levels, especially at around 500 hPa (absolute vorticity: $20{\sim}60{\times}10^{-5}s^{-1}$, cold air advection: $-10{\sim}-20^{\circ}C$ $12hr^{-1}$). Moreover, the spatial distributions of cold advection showed mostly the shape of a narrow band along the eastern coast of Korea. These features of absolute vorticity and cold advection at 500 hPa were sustained for about 10 hours before the occurrence of maximum hourly snowfall.

Assessment of Observation Environments of Automated Synoptic Observing Systems Using GIS and WMO Meteorological Observation Guidelines (GIS와 WMO 기상 관측 환경 기준을 이용한 종관기상관측소 관측환경평가)

  • Kang, Jung-Eun;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.693-706
    • /
    • 2020
  • For ten meteorological observatories running an automated synoptic observing system (ASOS), we classified the observation environments into five classes based on the World Meteorological Organization (WMO) classification guidelines. Obstacles (such as topography and buildings) and land-cover types were the main factors in evaluating the observation environments for the sunshine duration, air-temperature, and surface wind. We used the digital maps of topography, buildings, and land-cover types. The observation environment of the sunshine duration was most affected by the surrounding buildings when the solar altitude angle was low around the sunrise and sunset. The air-temperature observation environment was determined based on not only the solar altitude angle but the distance between the heat/water source and ASOS. There was no water source around the ASOSs considered in this study. Heat sources located near some ASOSs were not large enough to affect the observation environment. We evaluated the surface wind observation environment based on the roughness length around the ASOS and the distance between surrounding buildings and the ASOS. Most ASOSs lay at a higher altitude than the surroundings and the roughness lengths around the ASOSs were small enough to satisfy the condition for the best level.

Evaluation of the Air Temperature and Wind Observation Environments Around Automated Synoptic Observing Systems in Summer Using a CFD Model (전산유체역학 모델을 활용한 여름철 종관기상관측소의 기온과 바람 관측 환경 평가)

  • Kang, Jung-Eun;Rho, Ju-Hwan;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.471-484
    • /
    • 2022
  • This study examined the effects of topography and buildings around the automated synoptic observing system (ASOS) on the observation environment of air temperatures and wind speeds and directions using a computational fluid dynamics(CFD) model. For this, we selected 10 ASOSs operated by the Korea Meteorological Administration. Based on the data observed at the ASOSs in August during the recent ten years, we established the initial and boundary conditions of the CFD model. We analyzed the temperature observation environment by comparing the temperature change ratios in the case considering the actual land-cover types with those assuming all land-cover types as grassland. The land-cover types around the ASOSs significantly affected the air temperature observation environment. The temperature change ratios were large at the ASOSs around which buildings and roads were dense. On the other hand, when all land covers were assumed as grassland, the temperature change ratios were small. Wind speeds and directions at the ASOSs were also significantly influenced by topography and buildings when their heights were higher or similar to the observation heights. Obstacles even located at a long distance affected the wind observation environments. The results in this study would be utilized for evaluating ASOS observation environments in the relocating or newly organizing steps.

The Effect of Atmospheric Flow Field According to the Radius Influence and Nudging Coefficient of the Objective Analysis on Complex Area (자료동화의 영향반경과 동화강도가 복잡지형 기상장 수치모의에 미치는 영향)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Sung, Kyoung-Hee;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.271-281
    • /
    • 2009
  • In order to reduce the uncertainties and improve the air flow field, objective analysis using observational data is chosen as a method that enhances the reality of meteorology. To improve the meteorological components, the radius influence and nudging coefficient of the objective analysis should perform a adequate value on complex area for the objective analysis technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to clarify the impacts of the radius influence and nudging coefficient of the objective analysis on meteorological environments. By analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. In order to understand the quantitative impact of each run, the Statistical analysis by estimated by MM5 revealed the differences by the synoptic conditions. The strengthening of the synoptic wind condition tends to be well estimated when using quite a wide radius influence and a small nudging coefficient. On the other hand, the weakening of the synoptic wind is opposite.

Prevailing Synoptic Patterns for Persistent Positive Temperature Anomaly Episodes in the United States (장기간 지속되는 이상고온기의 종관패턴: 미국을 사례로)

  • Choi, Jong-Nam;Choi, Gwang-Yong;Williams, Thomas
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.701-714
    • /
    • 2008
  • This study examines the prevailing synoptic-scale mechanisms favorable for long-lived summer Persistent Positive Temperature Anomalies (PPTAs) as well as winter PPTAs in the United States. Such long-lived PPTAs usually occur in the south-central region of the United States in summer, but in the southwestern part of the United States in winter. Composite analyses of surface and pressure level data demonstrate that the formation of both winter and summer PPTAs is closely related to the movement of subtropical high pressure systems in the Pacific Ocean and Atlantic Ocean, respectively. The occurrence of long-lived summer PPTAs usually coincides with an extremely stable atmospheric condition caused by persistent blocking by mid- to upper-tropospheric anticyclones. Significant surface forcing is also easily identified through relatively high Bowen ratios at the surface. Warm air advection is, however, weak and appears to be an insignificant element in the formation of long-lived summer PPTAs. On the other hand, synergistic warming effects associated with adiabatic heating under an anticyclonic blocking system as well as significant warm air advection characterize the favorable synoptic environments for long-lived winter PPTAs. However, the impact of surface forcing mechanisms on winter PPTAs is insignificant.

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

Application of the Landsat TM/ETM+, KOMPSAT EOC, and IKONOS to Study the Sedimentary Environments in the Tidal Flats of Kanghwa and Hwang-Do, Korea

  • Ryu Joo-Hyung;Lee Yoon-Kyung;Yoo Hong-Rhyong;Park Chan-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.140-143
    • /
    • 2004
  • The west coast of the Korean Peninsula is famous for its large tidal range (up to 9 m) and vast tidal flats. With comparison the sedimentary environments of open and close tidal flat using remote sensing, we select Kanghwa tidal flat and Hwang-Do tidal flat in Cheonsu Bay. Prior to surface sediment discrimination using remote sensing, sedimentary environments including intertidal OEM, hydraulic condition, and relationship between grain size and various tidal condition are investigated. Remote sensing has the potential to provide synoptic information of intertidal environments. The objectives of this study are: (i) to generate an intertidal digital elevation model (OEM) using the waterline method of Lansat TM/ETM+, (ii) to investigate the tidal channel distribution using texture analysis, and (iii) to analyze the relationship between surface grain size by using in-situ data and intertidal OEM and tidal channel density by using high-resolution satellite data such as IKONOS and Kompsat EOC. The results demonstrate that satellite remote sensing is an efficient and effective tool for a surface sediment discrimination and long term morphologic change estimation in tidal flats.

  • PDF

Comparison of the Properties of Yeongdong and Yeongseo Heavy Rain (영동과 영서 호우의 특성 비교)

  • Kwon, Tae-Yong;Kim, Jae-Sik;Kim, Byung-Gon
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.245-264
    • /
    • 2013
  • Heavy rain over the Gangwon region has distinct characteristics in the temporal and spatial distribution of rainfall, most of which are concentrated on a very short period of time and either part of Yeongdong and Yeongseo regions. According to its regional distribution, heavy rain events over the Gangwon region may be classified into Yeongdong and Yeongseo heavy rain in which rainfalls of more than 110 mm $(6 hrs)^{-1}$ (heavy rain warning) have been observed in at least one of the weather stations over only Yeongdong or Yeongseo region, but over the other region the rainfalls are less than 70 mm $(6 hrs)^{-1}$ (heavy rain advisory). To differentiate between Yeongdong and Yeongseo heavy rain, 9 cases for Yeongdong heavy rain and 8 cases for Yeongseo heavy rain are examined on their synoptic and mesoscale environments using some meteorological parameters and ingredients. In addition, 8 cases are examined in which heavy rain warning or advisory are issued in both Yeongdong and Yeongseo regions. The cases for each heavy rain type have shown largely similar features in some meteorological parameters and ingredients. Based on an ingredient analysis, there are three common and basic ingredients for the three heavy rain types: instability, moisture, and lift. However, it is found that the distinct and important process producing strong upward vertical motions may discriminate among three heavy rain types very well. Yeongdong heavy rain is characterized by strong orographic lifting, Yeongseo heavy rain by high instability (high CAPE), and heavy rain over both regions by strong synoptic-scale ascent (strong 850 hPa Q-Vector convergence, diagnostics for ascent). These ingredients and diagnostics for the ingredients can be used to forecasting the potential for regional heavy rain. And also by knowing which of ingredients is important for each heavy rain type, forecasters can concentrate on only a few ingredients from numerous diagnostic and prognostic products for forecasting heavy rain events.

A STUDY ON THE ASTRONOMICAL OBSERVATIONAL ENVIRONMENTS AT THE CHOEJUNG-SAN GEODSS SITE: II. METEOROLOGICAL STUDY (최정산 위성추적소의 천체관측 환경에 관한 조사 연구: II. 천문 관측환경에 대한 기상학적 연구)

  • Yun, Il-Hui;An, Byeong-Ho;Kang, Yong-Hui;Yun, Tae-Seok
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.197-220
    • /
    • 1996
  • The climatological characteristics at the Choejung-san site were statistically analyzed using monthly normals for the various meteorological elements at Taegu meteorological station for 30 years from January 1960 to December 1990. Various synoptic weather conditions were classified by the estimated geostrophic wind speeds and direction determined using the 850 hPa geopotential height field for 10 years from December 1980 to November 1989. Also the analysis of number of clear days were monthly and seasonally performed using the satellite infrared image data which were obtained from GMS 5 for 5 years from December 1990 to November 1995. The results reveal that the meteorological environments of astronomical observation at Choejung-san site were very good conditions during three hours after midnight except for summer season.

  • PDF

A Case Study of Coastal Fog Event Causing Flight Cancellation and Traffic Accidents (항공기 결항과 연쇄 교통사고를 야기한 연안안개 사례 연구)

  • Kim, Young Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • A heavy foggy event accompanying with complex coastal fog was investigated in this study. This heavy foggy event occurred on FEB 11, 2015. Due to reduced visibility with this foggy event induced more than 100times serial traffic accidents over the Young-jong highway, and Flights from 04:30 AM to 10:00 AM were cancelled on Inchon International Airport. This heavy foggy event was occurred in synoptic and mesoscale environments but dense coastal fog were combined with a combination of sea fog, steam fog, and radiation fog. This kind of coastal fog can predicted by accurate analysis of the direction of the air flow, sea surface temperature(SST), and 925hPa isotherms from numerical weather prediction charts and real time analysis charts.