• Title/Summary/Keyword: synonymous codon usage bias

Search Result 5, Processing Time 0.021 seconds

Synonymous Codon Usage Controls Various Molecular Aspects

  • Im, Eu-Hyun;Choi, Sun Shim
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.123-127
    • /
    • 2017
  • Synonymous sites are generally considered to be functionally neutral. However, there are recent contradictory findings suggesting that synonymous alleles might have functional roles in various molecular aspects. For instance, a recent study demonstrated that synonymous single nucleotide polymorphisms have a similar effect size as nonsynonymous single nucleotide polymorphisms in human disease association studies. Researchers have recognized synonymous codon usage bias (SCUB) in the genomes of almost all species and have investigated whether SCUB is due to random nucleotide compositional bias or to natural selection of any functional exposure generated by synonymous mutations. One of the most prominent observations on the non-neutrality of synonymous codons is the correlation between SCUB and levels of gene expression, such that highly expressed genes tend to have a higher preference toward so-called optimal codons than lowly expressed genes. In relation, it is known that amounts of cognate tRNAs that bind to optimal codons are significantly higher than the amounts of cognate tRNAs that bind to non-optimal codons in genomes. In the present paper, we review various functions that synonymous codons might have other than regulating expression levels.

Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis

  • Bae, Young-An
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.175-183
    • /
    • 2017
  • Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between $GC_{12}$ and $GC_3$ was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., $GC_3$ vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.

Studies on Synonymous Codon and Amino Acid Usage Biases in the Broad-Host Range Bacteriophage KVP40

  • Sau Keya;Gupta Sanjib Kumar;Sau Subrata;Mandal Subhas Chandra;Ghosh Tapash Chandra
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.58-63
    • /
    • 2007
  • In this study, the relative synonymous codon and amino acid usage biases of the broad-host range phage, KVP40, were investigated in an attempt to understand the structure and function of its proteins/protein-coding genes, as well as the role of its tRNAs. Synonymous codons in KVP40 were determined to be AT-rich at the third codon positions, and their variations are dictated principally by both mutational bias and translational selection. Further analysis revealed that the RSCU of KVP40 is distinct from that of its Vibrio hosts, V. cholerae and V. parahaemolyticus. Interestingly, the expression of the putative highly expressed genes of KVP40 appear to be preferentially influenced by the abundant host tRNA species, whereas the tRNAs expressed by KVP40 may be required for the efficient synthesis of all its proteins in a diverse array of hosts. The data generated in this study also revealed that KVP40 proteins are rich in low molecular weight amino acid residues, and that these variations are influenced primarily by hydropathy, mean molecular weight, aromaticity, and cysteine content.

Insights into factors affecting synonymous codon usage in apple mosaic virus and its host adaptability

  • Pourrahim, R.;Farzadfar, Sh.
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.46-60
    • /
    • 2022
  • The genetic variability and population structure of apple mosaic virus (ApMV) have been studied; however, synonymous codon usage patterns influencing the survival rates and fitness of ApMV have not been reported. Based on phylogenetic analyses of 52 ApMV coat protein (CP) sequences obtained from apple, pear, and hazelnut, ApMV isolates were clustered into two groups. High molecular diversity in GII may indicate their recent expansion. A constant and conserved genomic composition of the CP sequences was inferred from the low codon usage bias. Nucleotide composition and relative synonymous codon usage (RSCU) analysis indicated that the ApMV CP gene is AU-rich, but G- and U-ending codons are favored while coding amino acids. This unequal use of nucleotides together with parity rule 2 and the effective number of codon (ENC) plots indicate that mutation pressure together with natural selection drives codon usage patterns in the CP gene. However, in this combination, selection pressure plays a more crucial role. Based on principal component analysis plots, ApMV seems to have originated from apple trees in Europe. However, according to the relative codon deoptimization index and codon adaptation index (CAI) analyses, ApMV exhibited the greatest fitness to hazelnut. As inferred from the results of the similarity index analysis, hazelnut has a major role in shaping ApMV RSCU patterns, which is consistent with the CAI analysis results. This study contributes to the understanding of plant virus evolution, reveals novel information about ApMV evolutionary fitness, and helps find better ApMV management strategies.

A Study on the Genomic Patterns of SARS coronavirus using Bioinformtaics Techniques (바이오인포매틱스 기법을 활용한 SARS 코로나바이러스의 유전정보 연구)

  • Ahn, Insung;Jeong, Byeong-Jin;Son, Hyeon S.
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.522-526
    • /
    • 2007
  • Since newly emerged disease, the Severe Acute Respiratory Syndrome (SARS), spread from Asia to North America and Europe rapidly in 2003, many researchers have tried to determine where the virus came from. In the phylogenetic point of view, SARS virus has been known to be one of the genus Coronavirus, but, the overall conservation of SARS virus sequence was not highly similar to that of known coronaviruses. The natural reservoirs of SARS-CoV are not clearly determined, yet. In the present study, the genomic sequences of SARS-CoV were analyzed by bioinformatics techniques such as multiple sequence alignment and phylogenetic analysis methods as well multivariate statistical analysis. All the calculating processes, including calculations of the relative synonymous codon usage (RSCU) and other genomic parameters using 30,305 coding sequences from the two genera, Coronavirus, and Lentivirus, and one family, Orthomyxoviridae, were performed on SMP cluster in KISTI, Supercomputing Center. As a result, SARS_CoV showed very similar RSCU patterns with feline coronavirus on the both axes of the correspondence analysis, and this result showed more agreeable results with serological results for SARS_CoV than that of phylogenetic result itself. In addition, SARS_CoV, human immunodeficiency virus, and influenza A virus commonly showed the very low RSCU differences among each synonymous codon group, and this low RSCU bias might provide some advantages for them to be transmitted from other species into human beings more successfully. Large-scale genomic analysis using bioinformatics techniques may be useful in genetic epidemiology field effectively.

  • PDF