• 제목/요약/키워드: synchronous switching frequency

검색결과 74건 처리시간 0.025초

Stationary Frame Current Control Evaluations for Three-Phase Grid-Connected Inverters with PVR-based Active Damped LCL Filters

  • Han, Yang;Shen, Pan;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.297-309
    • /
    • 2016
  • Grid-connected inverters (GCIs) with an LCL output filter have the ability of attenuating high-frequency (HF) switching ripples. However, by using only grid-current control, the system is prone to resonances if it is not properly damped, and the current distortion is amplified significantly under highly distorted grid conditions. This paper proposes a synchronous reference frame equivalent proportional-integral (SRF-EPI) controller in the αβ stationary frame using the parallel virtual resistance-based active damping (PVR-AD) strategy for grid-interfaced distributed generation (DG) systems to suppress LCL resonance. Although both a proportional-resonant (PR) controller in the αβ stationary frame and a PI controller in the dq synchronous frame achieve zero steady-state error, the amplitude- and phase-frequency characteristics differ greatly from each other except for the reference tracking at the fundamental frequency. Therefore, an accurate SRF-EPI controller in the αβ stationary frame is established to achieve precise tracking accuracy. Moreover, the robustness, the harmonic rejection capability, and the influence of the control delay are investigated by the Nyquist stability criterion when the PVR-based AD method is adopted. Furthermore, grid voltage feed-forward and multiple PR controllers are integrated into the current loop to mitigate the current distortion introduced by the grid background distortion. In addition, the parameters design guidelines are presented to show the effectiveness of the proposed strategy. Finally, simulation and experimental results are provided to validate the feasibility of the proposed control approach.

A Study on the High Performance PWM Technique for a Propulsion System of Railway

  • Lee, K.J.;Jeong, M.K.;Bang, L.S.;Seo, K.D.;Kim, N.H.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.425-430
    • /
    • 1998
  • This paper presents a high performance low switching PWM technique for the propulsion system of railway such as subway and high speed train. In order to achieve the continuous voltage control to six-step and a low harmonics with low switching frequency under 500Hz, the synchronous PWM technique is combined with a space vector overmodulation and implemented by using DSP. Improved performance and a validation of proposed method are showed by the digital simulation and the experimental results using a 1.65MVA IGBT VVVF inverter and inertia load equivalent to 160 tons railway vehicles.

  • PDF

Scalability of GMPLS Node Using Optical Frequency Shifters Based on SNR Analysis

  • Arai, Nahoko;Nakagawa, Kiyoshi;Takano, Katsumi;Hiranaka, Yukio
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.880-883
    • /
    • 2002
  • We propose an effective wavelength converter method using frequency shifter for photonic node, and examine the scalability of Generalized Multiprotocol Label Switching (GMPLS) networks. The ana1ysis is examined based on signal to noise ratio (SNR) for present 2.4 and 10 Gbit/s Synchronous Digital Hierarchy (SDH) networks, and next generation 2.7 and 10.8 Gbit/s Optical Transport Networks (OTN) format The proposed 100 channels GMPLS networks using optical frequency shifters are shown to be applicable to transmission network spanning over 1206 km(24 nodes) in 2.7 Gbit/s trunk networks. Transmission over more than 310 km (6 nodes) is also possible in 2.7 Gbit/s Metroporitan Area Networks(MAN).

  • PDF

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Analysis of a Harmonics Neutralized 48-Pulse STATCOM with GTO Based Voltage Source Converters

  • Singh, Bhim;Saha, Radheshyam
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.391-400
    • /
    • 2008
  • Multi-pulse topology of converters using elementary six-pulse GTO - VSC (gate turn off based voltage source converter) operated under fundamental frequency switching (FFS) control is widely adopted in high power rating static synchronous compensators (STATCOM). Practically, a 48-pulse ($6{\times}8$ pulse) configuration is used with the phase angle control algorithm employing proportional and integral (PI) control methodology. These kinds of controllers, for example the ${\pm}80MVAR$ compensator at Inuyama switching station, KEPCO, Japan, employs two stages of magnetics viz. intermediate transformers (as many as VSCs) and a main coupling transformer to minimize harmonics distortion in the line and to achieve a desired operational efficiency. The magnetic circuit needs altogether nine transformers of which eight are phase shifting transformers (PST) used in the intermediate stage, each rating equal to or more than one eighth of the compensator rating, and the other one is the main coupling transformer having a power rating equal to that of the compensator. In this paper, a two-level 48-pulse ${\pm}100MVAR$ STATCOM is proposed where eight, six-pulse GTO-VSC are employed and magnetics is simplified to single-stage using four transformers of which three are PSTs and the other is a normal transformer. Thus, it reduces the magnetics to half of the value needed in the commercially available compensator. By adopting the simple PI-controllers, the model is simulated in a MATLAB environment by SimPowerSystems toolbox for voltage regulation in the transmission system. The simulation results show that the THD levels in line voltage and current are well below the limiting values specified in the IEEE Std 519-1992 for harmonic control in electrical power systems. The controller performance is observed reasonably well during capacitive and inductive modes of operation.

자동차용 전동시스템 해석을 위한 평균값 인버터 모델 개발 (Development of Average Inverter Model for Analysis of Automotive Electric Drive System)

  • 최진철;배규태;이우택
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.23-30
    • /
    • 2010
  • A detailed circuit level model requires a small sampling time to represent high frequency switching behaviors with proper resolution. The small sampling time leads a large execution time to obtain the system analysis results. As the alternative of the detailed circuit model, an averaged PWM switch model was proposed for the rapid system level analysis. There exists a voltage distortion between the reference and output voltage because of non-ideal switching characteristics, such as the dead-time, diode forward voltage drop and conduction resistance. This paper analyzed causes and effects of the voltage distortion. The average inverter model, which reflecting this voltage distortion, is developed for the rapid and accurate analysis of automotive electric drive system in MATLAB/Simulink environment. The rapidity and accuracy of the proposed inverter model is proved through comparison between simulation and experiment.

The Effect of Asynchronous Carrier on Matrix Converter Characteristics

  • Oyama, Jun;Higuchi, Tsuyoshi;Abe, Takashi;Yamada, Eiji;Hayashi, Hideki;Koga, Takashi
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.512-517
    • /
    • 1998
  • In a matrix converter, input side and output side are coupled with each other through switching elements. Since disturbances on either side affect directly on the other side, it requires a high-speed on-line control system to compensate them. We proposed in previous papers a new control strategy and an on-line control circuit for a matrix converter. The control circuit could keep the output voltage at commanded value against fluctuation in the supply voltage. Furthermore wave forms of the output voltage and the input current were always kept sinusoidal. The switching pattern was generated by comparing modified voltage references with a carrier. The carrier was synchronized with the supply voltage using a PLL system, which made the control circuit complicated and costly. This paper discusses on the possibility of an asynchronized carrier. Experiment results show the input current distortion in case of asynchronous carrier is bigger than that of synchronous carrier. However, the deterioration can be minimized by increased carrier frequency.

  • PDF

철도차량용 추진제어장치의 고능률 PWM기법에 관한 연구 (A Study on the High Performance PWM Technique for a Propulsion System of Railway)

  • 민병권;서광덕;원충연
    • 전자공학회논문지S
    • /
    • 제35S권10호
    • /
    • pp.186-192
    • /
    • 1998
  • 이 논문은 고속전철, 지하철과 같은 철도차량의 추진제어시스템에 적용될 수 있는 고능률 저주파 스위칭 PWM 기법에 관한 것이다. 500Hz이하의 낮은 스위칭 주파수로써 6스텝까지의 과변조제어를 연속적으로 수행할 뿐만 아니라 고주파 함유율을 저하 시키기 위한 PWM 방법으로 동기 기법을 공가벡터변조에 적용하였으며 DSP를 사용하여 구현하였다. 제안된 기법의 우수성과 효용성은 디지털 시뮬레이션과 실용량 모델의 실험을 통해 보인다. 실험은 전동차 추진제어장치인 1.65MVA IGBT VVVF인버터와 160톤의 전동차를 등가화한 관성부하를 통해 수행되었다.

  • PDF

Hybrid PWM Modulation Technology Applied to Three-Level Topology-Based PMSMs

  • Chen, Yuanxi;Guo, Xinhua;Xue, Jiangyu;Chen, Yifeng
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.146-157
    • /
    • 2019
  • The inverter is an essential part of permanent magnet synchronous motor (PMSM) drive systems. The performance of an inverter is greatly influenced by its modulation strategy. Using a proper management of modulation strategies can guarantee high performance from a PMSM under various speed conditions. Switching between modulations is a pivotal technique that determines the performance of a PMSM. Most works on hybrid methods focus on two-level induction motors drive systems. In this paper, in order to improve the performance of PMSMs under various speed conditions, a hybrid method of a pulse width modulation (PWM) control scheme based on a neutral-point-clamped (NPC) three level topology was proposed. This hybrid PWM modulation comprised space vector PWM (SVPWM) and selective harmonic elimination PWM (SHEPWM). Under low speed conditions, the SVPWM is employed to cause the PMSM to start smoothly, and to obtain a rapid response from the control system. Under high speed conditions, the SHEPWM is employed to reduce the switching frequency and to eliminate particular current harmonics. Moreover, the harmonic characteristics of different modulations are analyzed to obtain a smooth transition between the SHEPWM and the SVPWM. Experimental and simulation results indicated the effectiveness of the proposed control method.