• Title/Summary/Keyword: synchronous machine

Search Result 421, Processing Time 0.04 seconds

Optimization of a Flywheel PMSM with an External Rotor and a Slotless Stator

  • Holm S.R;Polinder H.;Ferreira J.A.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.215-223
    • /
    • 2005
  • An electrical machine for a high-speed flywheel for energy storage in large hybrid electric vehicles is described. Design choices for the machine are motivated: it is a radial-flux external-rotor permanent-magnet synchronous machine without slots in the stator iron and with a shielding cylinder. An analytical model of the machine is briefly introduced whereafter optimization of the machine is discussed. Three optimization criteria were chosen: (1) torque; (2) total stator losses and (3) induced eddy current loss on the rotor. The influence of the following optimization variables on these criteria is investigated: (1) permanent-magnet array; (2) winding distribution and (3) machine geometry. The paper shows that an analytical model of the machine is very useful in optimization.

Optimal Rotor Structure Design of Interior Permanent Magnet Synchronous Machine based on Efficient Genetic Algorithm Using Kriging Model

  • Woo, Dong-Kyun;Kim, Il-Woo;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.530-537
    • /
    • 2012
  • In the recent past, genetic algorithm (GA) and evolutionary optimization scheme have become increasingly popular for the design of electromagnetic (EM) devices. However, the conventional GA suffers from computational drawback and parameter dependency when applied to a computationally expensive problem, such as practical EM optimization design. To overcome these issues, a hybrid optimization scheme using GA in conjunction with Kriging is proposed. The algorithm is validated by using two mathematical problems and by optimizing rotor structure of interior permanent magnet synchronous machine.

Performance Comparison of PM Synchronous and PM Vernier Machines Based on Equal Output Power per Unit Volume

  • Jang, Dae-Kyu;Chang, Jung-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.150-156
    • /
    • 2016
  • This paper compares the performances of permanent-magnet synchronous (PMS) and permanent-magnet vernier (PMV) machines for low-speed and high-torque applications. For comparison with the PMS machines, we consider two types of the PMV machine. The first one has surface-mounted permanent magnets (PMs) on the rotor and the other has PMs inserted on both sides of the stator and rotor. The PMS and PMV machines are designed to meet the condition of equal output power per unit volume. We analyze the magnetic fields of the machines using a two-dimensional finite element analysis (FEA). We then compare their performances in terms of the generated torque characteristics, power factor, loss, and efficiency.

Improvement of the Thermal Characteristics of Synchronous Linear Motors Through Insulation (단열에 의한 동기식 리니어모터의 열특성 향상)

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force measured and analyzed. To improve the thermal characteristics of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented.

Characteristic Analysis of Permanent Magnet Linear Synchronous Machine according to PM Overhang (선형 영구자석 기기의 오버행에 따른 특성해석)

  • Koo, Min-Mo;Choi, Jang-Young;Shin, Hyeon-Jae;Hong, Keyyong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.833-834
    • /
    • 2015
  • For the design of a permanent magnet linear synchronous machine with slotless stator structure, this paper addresses a three-dimensional (3D) analytical approach for consideration of end effects. In contrast, analytical method can derive solutions in substantially shorter times with high reliability. Therefore, we derive accurate analytical solutions to dramatically reduce the time need for analysis. In addition, we performed characteristic analysis of permanent magnet linear synchronous machine (PMSLM) according to PM overhang length.

  • PDF

Performance Analysis for the Modified Excitation System of Synchronous Machine Connected to HVDC System

  • Kim, Chan-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.109-114
    • /
    • 2002
  • This paper analysis the transient performance of the modified excitation system using 4-quadrant chopper for a synchronous machine connected to HVDC system. Conventionally, capacitors are used to supply reactive power requirement at a strong converter bus. And the installation of a synchronous machine is essential in an isolated weak network to re-start after a shutdown of HVDC and to increase the system strength. However, a conventional static excitation system has some problems which are harmonic instability and the system stress due to overvoltage. To reduce these problems, the new excitation system, which has 4-quadrant chopper, is proposed. As the proposed system provides the capability to allow reverse current and isolate between AC network and excitation power, problems of overvoltage and harmonic instability can be solved. The investigation is performed and confirmed by the time domain digital simulation using PSCAD/EMTDC program.

Improvement of the Thermal Behavior of the Secondary Part of Synchronous Linear Motors with High Speed and Thrust (고속.대추력 동기식 리니어모터 세컨더리 파트의 열특성 향상)

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.505-512
    • /
    • 2011
  • Linear permanent magnet synchronous motors utilize high-energy product permanent magnet to produce high thrust, velocity and acceleration. Such motors are finding applications requiring high positioning accuracy and speed response, for example, machine tools, in the absence of mechanical gears and ball screw systems. A disadvantage of the linear motors is high power loss in comparison with rotary motors. For the application of the linear motors to machine tools, it is required to use water coolers and to improve the thermal behavior through insulation and structure optimization or control strategies. This paper presents the function of the secondary part of the linear synchronous motor as to the thermal behavior and the improving method. The result shows cooling pipe combined with an insulation layer is a suitable design for improving of the thermal behavior.

Initial Magnetic-Circuit Design of High Speed Permanent-Magnet Synchronous Machine (초고속 영구자석 동기기의 기초자기회로설계)

  • Joo, Daesuk;Hong, Do-Kwan;Woo, Byung-Chul;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • This paper presents mathematical models for high speed permanent-magnet synchronous machine. The mathematical method with two successive steps is used to estimate design parameter as well as the output power. At first, mathematical model for a linkage flux problem is employed to calculate the number of winding turns and stack length of armature core. The magnetic circuit model for an induced voltage and the electric circuit model for a current are modeled. The output powers of the electrical generator were evaluated by the mathematical techniques. The results of this mathematical methods predict the specifications of the machine and can be applied in the design stage of the electrical machine.

Operation Principle and Topology Structures of Axial Flux-Switching Hybrid Excitation Synchronous Machine

  • Liu, Xiping;Wang, Chen;Zheng, Aihua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • The operation principle of an axial flux-switching hybrid excitation synchronous machine (AFHESM) is analyzed and its topology structures are proposed in this paper. After some comprehensive analysis of the operation principle to axial flux electrical machine, flux-switching electrical machine and hybrid excitation electrical machine, the operation principle of AFHESM is given. Combined with some typical topological structures of hybrid excitation electrical machine, some possible topological structures are proposed and some comprehensive comparisons are carried out. The analysis results show that the stator-separated AFHESM has some advantages such as less AM turns, less impact on the demagnetization of PM, less magnetic flux-leakage and higher efficiency compared to other topologies.

Improvement of the Thermal Characteristics of Synchronous Linear Motors through Structure Change (Synchronous Linear Motor의 구조변경에 의한 열특성에 개선)

  • 은인웅;이춘만;정원지;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.367-370
    • /
    • 1997
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, the thermal behavior of a synchronous linear motor with high velocity and force is analyzed. To improve the thermal characteristics of the linear motor, structure of linear motor and cooler is changed. Some effects of an integrated cooler, an U-cooler and a thermal symmetrical cooler are presented.

  • PDF