• 제목/요약/키워드: synchronous machine

검색결과 422건 처리시간 0.03초

빠른 응답성을 갖는 가변속 DFIM 분석 (Analysis of Doubly Fed Variable-Speed Pumped Storage Hydropower Plant for Fast Response)

  • 손금뢰;서정진;차한주
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.425-430
    • /
    • 2022
  • A pumped storage power station is an important means to solve the problem of peak load regulation and ensures the safety of power grid operation. The doubly fed variable-speed pumped storage (DFVSPS) system adopts a doubly fed induction machine (DFIM) to replace the synchronous machine used in traditional pumped storage. The stator of DFIM is connected to the power grid, and the three-phase excitation windings are symmetrically distributed on the rotor. Excitation current is supplied by the converter. The active and reactive power of the unit can be quickly adjusted by adjusting the amplitude, frequency, and phase of the rotor-side voltage or current through the converter. Compared with a conventional pumped storage hydropower station (C-PSH), DFVSPS power stations have various operating modes and frequent start-up and shutdown. This study introduces the structure and principle of the DFVSPS unit. Mathematical models of the unit, including a model of DFIM, a model of the pump-turbine, and a model of the converter and its control, are established. Fast power control strategies are proposed for the unit model. A 300 MW model of the DFVSPS unit is established in MATLAB/Simulink, and the response characteristics in generating mode are examined.

적응 적분바이너리 관측기를 이용한 원통형 영구자석 동기전동기의 센서리스 속도제어 (A Sensorless Speed Control of Cylindric;31 Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer)

  • 최양광;김영석;한윤석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.152-163
    • /
    • 2004
  • This paper presents a sensorless speed control of cylindrical permanent magnet synchronous motors(PMSM) using an adaptive integral binary observer In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. With the help of integral characteristic, the rotor speed can be finely estimated and utilized for a sensorless speed controller for PMSM. Since the Parameters of the dynamic equations such as machine inertia or a viscosity friction coefficient are lot well known, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that observer may overcome the problem caused by using the dynamic equations and the rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

적응 입출력 선형화 제어 기법을 이용한 매입형 영구 자석 동기 전동기의 토오크 궤적 제어 (Torque Trajectory Control of Interior PM Synchronous Motor Using Adaptive Input-Output Linearization Technique)

  • 김경화;백인철;김현수;문건우;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.578-581
    • /
    • 1996
  • A torque trajectory control of the IPM synchronous motor using an adaptive input-output linearization technique is proposed. The input-output linearization is performed using the estimated torque output with the knowledge of machine parameters. The linearized model gives the output torque error under the variation of the flux linkage. To give a good torque tracking in the presence of the flux linkage variation, the flux linkage will be estimated where the adaptation law h derived by the Popov's hyperstability theory and the positivity concept. This estimated value is also used for the generation of the d-axis current command for the maximum torque control. Thus, a good torque tracking and the exact maximum torque-per-current operation will be obtained.

  • PDF

개체지향기반 안정도 해석 프로그램 개발 및 적용 (Development and Application of Power System Stability Analysis Program Using OOP)

  • 박지호
    • 에너지공학
    • /
    • 제11권3호
    • /
    • pp.194-202
    • /
    • 2002
  • 본 논문은 객체지향 프로그램(OOP)을 사용하여 광양제철소 전력계통의 과도안정도를 모의한다. OOP는 절차식 프로그램보다 유연한 방법으로서 동적인 시스템의 모의에 여러 가지 장점이 있다. 시스템의 변화가 있으면 프로그램 전체을 수정하는 대신 필요한 부분만을 수정하면 되므로, 프로그램의 유지 및 보수가 매우 용이하다. 본 논문에서는 OOP를 이용하여 동적인 시스템의 해석을 위한 유연한 방법을 제시하였다. 시스템을 직접 사용자가 그려서 전력조류계산과 동적 안정도를 모의할 수 있는 사용자 인터페이스를 구현하여 17기의 동기발전기와 25기의 동기전동기로 구성되는 광양제철소 전력계통의 동적 안정도 해석에 적용하였다.

Position Control for Interior Permanent Magnet Synchronous Motors using an Adaptive Integral Binary Observer

  • Kang, Hyoung-Seok;Kim, Cheon-Kyu;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.240-248
    • /
    • 2009
  • An approach to control the position for an interior permanent magnet synchronous motor (IPMSM) based on an adaptive integral binary observer is described. The binary controller with a binary observer is composed of a main loop regulator and an auxiliary loop regulator. One of its key features is that it alleviates chatter in the constant boundary layer. However, steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer and eliminate the chattering problem of the constant boundary layer, a new binary observer is formed by adding extra integral dynamics to the existing switching hyperplane equation. Also, the proposed adaptive integral binary observer applies an adaptive scheme because the parameters of the dynamic equations such as the machine inertia and the viscosity friction coefficient are not well known. Furthermore, these values can typically be easily changed during normal operation. However, the proposed observer can overcome the problems caused by using the dynamic equations, and the rotor position estimation is constructed by integrating the rotor speed estimated with a Lyapunov function. Experimental results obtained using the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Model Predictive Torque Control of Surface Mounted Permanent Magnet Synchronous Motor Drives with Voltage Cost Functions

  • Zhang, Xiaoguang;Hou, Benshuai;He, Yikang;Gao, Dawei
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1369-1379
    • /
    • 2018
  • In this paper, a model predictive torque control (MPTC) without the use of a weighting factor for surface mounted permanent-magnet synchronous machine (SPMSM) drive systems is presented. Firstly, the desired voltage vector is predicted in real time according to the principles of deadbeat torque and flux control. Then the sector of this desired voltage vector is determined. The complete enumeration for testing all of the feasible voltage vectors is avoided by testing only the candidate vectors contained in the sector. This means that only two voltage vectors in the sector need to be tested for selecting the optimal voltage vector in each control period. Thus, the calculation time can be reduced when compared with the conventional enumeration method. On the other hand, a novel cost function that only includes the dq-axis voltage errors between the desired voltage and candidate voltage is designed to eliminate the weighting factor used in the conventional MPTC. Thus, the control complexity caused by the tuning of the weighting factor is effectively decreased when compared with the conventional MPTC. Simulation and experimental investigation have been carried out to verify the proposed method.

적응 적분바이너리 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어 (A Sensorless Speed Control of Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer)

  • 강형석;김영석
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.71-80
    • /
    • 2007
  • A control approach for the sensorless speed control of interior permanent magnet synchronous motor(IPMSM) based on adaptive integral the binary is proposed. With a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the width of the constant boundary limits the steady state estimation accuracy and robustness. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral augmented switching the hyperplane equation. By mean of integral characteristics, the rotor speed can be finely estimated and utilized for a sensorless speed controller for IPMSM. The proposed adaptive integral binary observer applies an adaptive scheme, because the parameters of the dynamic equations such as the machine inertia or the viscosity friction coefficient is not well known and these values can be easily changed generally during normal operation. Therefore, the observer can overcome the problem caused by using the dynamic equations, and the rotor speed estimation is constructed by using the Lyapunov function. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

A Speed Sensorless Vector Control for Permanent Magnet Synchronous Motors based on an Adaptive Integral Binary Observer

  • Choi Yang-Kwang;Kim Young-Seok;Han Yoon-SeoK
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.70-77
    • /
    • 2005
  • This paper presents sensorless speed control of a cylindrical permanent magnet synchronous motor (PMSM) using the adaptive integral binary observer. In view of the composition with a main loop regulator and an auxiliary loop regulator, the normal binary observer has the feature of chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer, a new binary observer is formed by the addition of extra integral dynamics to the existing switching hyperplane equation. Also, because the parameters of the dynamic equations such as machine inertia or viscosity friction coefficient are not well known and these values can be changed during normal operations, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that the observer may overcome the problems caused by using dynamic equations. The rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to prove the effectiveness of the approach.

3-레벨 반브리지로 구성된 SSSC의 동특성 분석 (Dynamic Characteristic Analysis of 3-Level Half-bridge SSSC)

  • 박상호;하요철;백승택;김희중;한병문
    • 전력전자학회논문지
    • /
    • 제6권4호
    • /
    • pp.317-324
    • /
    • 2001
  • 본 논문에서는 3-레벨 반브리지 인버터로 구성된 SSSC를 제안하였다. 제안한 SSSC의 동적특성을 분석하기 위해서 1기 무한모선 전력계통에 SSSC응 연결한 것을 가정하고 EMTP 시뮬레이션을 수행하였고, 축소모형 실험으로 그 특성을 확인하였다. 3-레벨 SSSC는 한 상당 6개의 단상 풀브리지 인버터로 구성되었고, PWM모드로 동작한다. 3-레벨 SSSC는 전압 주입을 위한 연계 변압기가 필요하지 않고, 전력계통에서 요구되는 동작전압에 EK라 브리지의 수를 가감하여 용이하게 구성할 수 있다.

  • PDF

양측식 영구자석 가동형 슬롯리스 직선 동기전동기의 전자기 특성 및 동특성 해석에 의한 설계정수 도출 (Extraction of Design Parameters through Electromagnetic and Dynamic Analysis of Slotless Double-side PMLSM system)

  • 장원범;이성호;장석명;유대준
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2135-2144
    • /
    • 2007
  • This paper presents system design of the slotless double-side Permanent Magnet Linear Synchronous Machine system (PMLSM) through magnetic field analysis and dynamic modeling. In our analysis, 2-D analytical treatments based on the magnetic vector potential were adopted to predict magnetic field with space harmonics by PM mover magnetization and stator winding current. From these, the design parameters such as inductance, Back-emf, and thrust are estimated. And, the electrical dynamic modeling including synchronous speed is completed by calculation of a DC link voltage in effort to obtain the accurate mechanical power from Space Vector Pulse Width Modulation(SVPWM). Therefore, the system design of PMLSM is performed from estimation of design parameters according to PM size and coil turns in magnetic field and from calculation of a DC link voltage to satisfy base speed and base thrust represented as the maximum output power in dynamic modeling. The estimated values from the analysis are verified by the finite element method and experimental results.