• Title/Summary/Keyword: synchronous machine

Search Result 421, Processing Time 0.024 seconds

A Study on the Speed Control of PMSM for Elevator Drive (엘리베이터구동용 영구자석형 동기전동기의 속도제어에 관한 연구)

  • Yu J.S.;Kim L.H.;Choi G.J.;Yoon K.C.;Jung M.T.;Kim Y.C.;Lee S.S.;Won C.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.461-466
    • /
    • 2003
  • This paper presents the speed control of the surface-mounted permanent-magnet synchronous motors (SMPMSM) for the elevator drive. The elevator motor needs to be a compact and slim type. Essentially, the proposed scheme uses a vector control algorithm for a speed and torque control. This system is implemented using a high speed 32-bit DSP (TMS320C31-50), a high-integrated logic device FPGA (EPF10K10-Tl144-3) to design compactly and Inexpensively The proposed scheme is verified through digital simulation and experiments for a three-phase 13.3kW SMPMSM as a MRL(MachineRoomless) elevator motor ill the laboratory. Finally, experiment of the test tower was performed with a 48kW PWM converter-inverter system for a high- speed elevator .

  • PDF

Decoupling of the Secondary Saliencies in Sensorless PMSM Drives using Repetitive Control in the Angle Domain

  • Wu, Chun;Chen, Zhe;Qi, Rong;Kennel, Ralph
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1375-1386
    • /
    • 2016
  • To decouple the secondary saliencies in sensorless permanent magnet synchronous machine (PMSM) drives, a repetitive control (RC) in the angle domain is proposed. In this paper, the inductance model of a concentrated windings surface-mounted PMSM (cwSPMSM) with strong secondary saliencies is developed. Due to the secondary saliencies, the estimated position contains harmonic disturbances that are periodic relative to the angular position. Through a transformation from the time domain to the angle domain, these varying frequency disturbances can be treated as constant periodic disturbances. The proposed angle-domain RC is plugged into an existing phase-locked loop (PLL) and utilizes the error of the PLL to generate signals to suppress these periodic disturbances. A stability analysis and parameter design guidelines of the RC are addressed in detail. Finally, the proposed method is carried out on a cwSPMSM drive test-bench. The effectiveness and accuracy are verified by experimental results.

A Design of Optimal PI Controller of SVC System using Genetic Algorithms (유전 알고리즘을 이용한 SVC 계통의 최적 PI 제어기 설계)

  • Jeong, Hyeong-Hwan;Heo, Dong-Ryeol;Wang, Yong-Pil;Han, Gil-Man;Kim, Hae-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.212-219
    • /
    • 2000
  • This paper deals with a systematic approach to GA-PI controller design for static VAR compensator(SVC) using genetic algorithms(GAs) which are search algorithms based on the mechanics of natural of natural selection and natural genetics, to improve system stability. A SVC, one of the Flexible AC Transmission System(FACTS), constructed by a fixed capacitor(FC) and a thyristor controlled reactor(TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. To verify the robustness of the proposed method, considered dynamic response of generator used deviation and generator terminal voltage by applying a power fluctuation and three-phase fault at heavy load, normal load and light load. Thus, we proved usefulness of GA-PI controller design to improve the stability of single machine-infinite bus with SVC system.

  • PDF

A Design of Power System Stabilization for SVC System Using a RVEGA (실 변수 엘피트주의 유전알고리즘을 이용한 SVC 계통의 안정화 장치의 설계)

  • Chung, Hyeng-Hwan;Hur, Dong-Ryol;Lee, Jeong-Phil;Wang, Yong-Peel
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.7
    • /
    • pp.324-332
    • /
    • 2001
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Static VAR Compensator(SVC) using a Real Variable Elitism Genetic Algorithm(RVEGA). A SVC, one of the Flexible AC Transmission System(FACTS), constructed by a fixed capacitor(FC) and a thyristor controlled reactor(TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. The proposed PSS parameters are optimized using RVEGA in order to maintain optimal operation of generator under the various operating conditions. To decrease the computational time, real variable string is adopted. To verify the robustness of the proposed method, we considered the dynamic response of generator speed deviation and generator terminal voltage by applying a power fluctuation and three-phase fault at heavy load, normal load and light load. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

A Low Cogging Force Permanent Magnet Linear Motor Having 3 Phase 9 Pole 10 Slot Structure (코깅력이 저감된 3상 9극 10슬롯 구조의 영구자석 선형 전동기)

  • Youn, Sung-Whan;Lee, Jong-Jin;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.547-554
    • /
    • 2006
  • The detent force of a permanent magnet linear motor(PMLM) consists of the end force and cogging force, and should be reduced for high precision purpose applications. The cogging force comes from the electromagnetic interaction between the permanent magnets and interior teeth(or the slots) of the stator, and of which the magnitude depends on the ratio of the numbers of the armature and permanent magnet poles as well as the geometrical shape of the permanent magnet and armature pole. In order to reduce the cogging force of a PMLM, this paper proposes a new configuration which has 9 permanent magnet poles and 10 armature winding slots. By theoretical investigation of the principle of cogging force generation and simulating using finite element method, the proposed PMLM configuration is proven to give much less cogging force than the conventional configuration which has 8 permanent magnet poles and 12 armature winding slots. A proper winding algorithm, modified (A, A, A) winding method, for the proposed configuration is also suggested when the proposed PMLM is operating as a 3 phase synchronous machine. A theoretical and numerical calculation shows that the proposed configuration makes slightly bigger back-emf and thrust force under same exciting current and total number of winding turns condition.

Design of GA-LQ Controller in SVC for Power System Stability Improvement (전력시스템 안정도 향상을 위한 SVC용 GA-LQ 제어기 설계)

  • Hur, D.R.;Park, I.P.;Chung, M.K.;Chung, H.H.;Ahn, B.C.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.226-228
    • /
    • 2002
  • This paper presents a new control approach for designing a coordinated controller for static VAR compensator system. A SVC constructed by a Fixed Capacitor and a Thyristor Controlled Reactor is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. A design of linear quadratic controller based on optimal controller depends on choosing weighting matrices. A coordinated optimal controller is achieved by minimizing a quadratic performance index using dynamic programming techniques. The selection of weighting matrices is usually carried out by trial and error which is not a trivial problem. We proposed a efficient method using GA of finding weighting matrices for optimal control law. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

Development of a 300 HP Class Turbo Blower with Air Foil Bearings (공기 포일 베어링을 사용하는 300마력급 터보송풍기 개발)

  • Kim, Kyeong-Su;Lee, Ki-Ho;Park, Ki-Cheol;Lee, Si-Woo;Kim, Seung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.331-334
    • /
    • 2006
  • Air foil bearings have been attempted for application to industrial turbo machines, since they have several advantages over oil bearings in terms of endurance, simplicity, environment-friendliness, efficiency, sound and vibration, and small turbo machines with air foil bearings are in the market as the result. Recently, researches on widening the application spectrum of air foil bearings are in progress worldwide. In this paper, a 300 HP class turbo blower using air foil bearings is introduced. The turbo blower has a high speed PMSM(Permanent Magnet Synchronous Motor) driving a compressor, and air flow rate is designed to be $180\;m^3/min$ at pressure ratio of 1.6. The maximum rotational speed is set to 17,000 RPM to maximize the total efficiency with the result that the weight of rotor assembly is 26kg, which is expected to be the largest turbo machine with air foil bearings ever developed in the world.

  • PDF

Robust Control of Input/state Asynchronous Machines with Uncertain State Transitions (불확실한 상태 천이를 가진 입력/상태 비동기 머신을 위한 견실 제어)

  • Yang, Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.39-48
    • /
    • 2009
  • Asynchronous sequential machines, or clockless logic circuits, have several advantages over synchronous machines such as fast operation speed, low power consumption, etc. In this paper, we propose a novel robust controller for input/output asynchronous sequential machines with uncertain state transitions. Due to model uncertainties or inner failures, the state transition function of the considered asynchronous machine is not completely known. In this study, we present a formulation to model this kind of asynchronous machines ana using generalized reachability matrices, we address the condition for the existence of an appropriate controller such that the closed-loop behavior matches that of a prescribed model. Based on the previous research results, we sketch design procedure of the proposed controller and analyze the stable-state operation of the closed-loop system.

A Study on the Assessment of Operational Capacity Limit of Wind Turbine for the Frequency Stability of Jeiu Island System (제주계통 단독운전 시 주파수 안정도 유지를 위한 풍력발전 운전용량 산정 방법에 관한 연구)

  • Hwang, Kyo-Ik;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • As the Kyoto Protocol, which aims at reducing greenhouse gases in accordance to the UNFCCC, came into force, research on environment friendly energy resources has been a matter of concern worldwide. As a general power generation system, among renewable energy resources, that is interconnected and operated with power system, the wind turbine is emerging as an effective alternative. Since power capacity of the wind turbine has been steadily increasing and its relative importance is also increasing in total facility capacity, we cannot ignore its effect. Because controlling generation output in the wind turbine is not as easy as in the synchronous machine due to its facility characteristics and it generates irregular output fluctuations when interconnected with power system, system interconnection was difficult. But the effect of large capacity wind turbine on isolated power system like Jeju island is serious problem on the frequency stability. Accordingly, it is necessary to analyze the effects of wind turbine on system interconnection and assess the optimum capacity of wind turbine that satisfies the most important principle of stable power supply. This paper have analyzed the effects of wind turbine capacity increases on the system and suggested the method of the capacity to achieve its steady operation. And It is applied to the Jeju island.

Study of the Method of Calculating Maximum Voltage for Flux-Weakening Operation of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 약계자 제어를 위한 최대전압 선정에 관한 연구)

  • Kim, Jang-Mok;Kim, Su-Yeol;Ryu, Ho-Seon;An, Yong Ho;Yoon, Gi Gab;Lim, Ik-Hun;Jun, Hyang-Sig
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.63-69
    • /
    • 2000
  • The constraint conditions are the stator voltage and the stator current to operate the motor in the flux weakening region. The maximum current is limited by the inverter current rating and the machine thermal rating. Given DC link voltage to control the motor in the flux weakening the maximum voltage is determined by considering PWM strategy, dead time, voltage drop of the inverter switching device, and the margin of the voltage for current forcing. In this paper, the new method to determine the available maximum voltage is derived by the quantitative method and by considering the factors of the voltage drop. The proposed method to determine the maximum voltage is very useful to improve the stability of the motor system and to enlarge the speed operation region in the flux weakening operation. Therefore the utility of the maximum voltage is increased.

  • PDF