• Title/Summary/Keyword: symmertic key cipher

Search Result 1, Processing Time 0.014 seconds

VLIS Design of OCB-AES Cryptographic Processor (OCB-AES 암호 프로세서의 VLSI 설계)

  • Choi Byeong-Yoon;Lee Jong-Hyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1741-1748
    • /
    • 2005
  • In this paper, we describe VLSI design and performance evaluation of OCB-AES crytographic algorithm that simulataneously provides privacy and authenticity. The OCB-AES crytographic algorithm sovles the problems such as long operation time and large hardware of conventional crytographic system, because the conventional system must implement the privancy and authenticity sequentially with seqarated algorithms and hardware. The OCB-AES processor with area-efficient modular offset generator and tag generator is designed using IDEC Samsung 0.35um standard cell library and consists of about 55,700 gates. Its cipher rate is about 930Mbps and the number of clock cycles needed to generate the 128-bit tags for authenticity and integrity is (m+2)${\times}$(Nr+1), where m and Nr represent the number of block for message and number of rounds for AES encryption, respectively. The OCB-AES processor can be applicable to soft cryptographic IP of IEEE 802.11i wireless LAN and Mobile SoC.