• Title/Summary/Keyword: symbiotic bacterium

Search Result 44, Processing Time 0.018 seconds

Characterization of Pseudomonas sp. NIBR-H-19, an Antimicrobial Secondary Metabolite Producer Isolated from the Gut of Korean Native Sea Roach, Ligia exotica

  • Sungmin Hwang;Jun Hyeok Yang;Ho Seok Sim;Sung Ho Choi;Byounghee Lee;Woo Young Bang;Ki Hwan Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1416-1426
    • /
    • 2022
  • The need to discover new types of antimicrobial agents has grown since the emergence of antibiotic-resistant pathogens that threaten human health. The world's oceans, comprising complex niches of biodiversity, are a promising environment from which to extract new antibiotics-like compounds. In this study, we newly isolated Pseudomonas sp. NIBR-H-19 from the gut of the sea roach Ligia exotica and present both phenotypes and genomic information consisting of 6,184,379 bp in a single chromosome possessing a total of 5,644 protein-coding genes. Genomic analysis of the isolated species revealed that numerous genes involved in antimicrobial secondary metabolites are predicted throughout the whole genome. Moreover, our analysis showed that among twenty-five pathogenic bacteria, the growth of three pathogens, including Staphylococcus aureus, Streptococcus hominis and Rhodococcus equi, was significantly inhibited by the culture of Pseudomonas sp. NIBR-H-19. The characterization of marine microorganisms with biochemical assays and genomics tools will help uncover the biosynthesis and action mechanism of antimicrobial metabolites for development as antagonistic probiotics against fish pathogens in an aquatic culture system.

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

Optimal Cultur Conditions for the Production of Insecticidal Toxin by Xenorhabdus nematophilus Isolated from Steinernema carpocapsae (Steinernema carpocapsae로부터 분리된 Xenorhabdus nematophilus에 의한 살충물질 생산을 위한 최적 배양조건)

  • 유연수;박선호
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.100-105
    • /
    • 2000
  • Optimal medium composition, culture conditions, characteristics of phase variation and activity of insecticidal toxin by Xenorhabdus nematophilus isolated and identified from Korean entomopathogenic nematode Steinernema carpocapsae were examined. Optimal medium composition of this strain was 50-70 g/L yeast extract, 3 g/L $K_{2}HPO_{4}$, 1g/L $NH_{4}H_{2}PO_{4}$, 2g/L ${MgSO}_4$$\cdot$${7H}_{2}O$, 10g/L NaCl and, these, yeast extract was found as a limiting nutrient for cell growth. When Monod equation was applied, maxmum specific growth rate and Monod constant were estimated as 0.13 $hr^{-1}$ and 20g/L, respectively. The pH of culture medium increased up to 8.5-9.5 regardless of initial pH 6-7 as the cells continued to grow. The specific growth rate in a 7 L fermentor was 0.18 $hr^{-1}$, which was enhancement 1.4 fold compared to a flask culture. In case of phase variation, phase I fraction was maintained above 90% at the stationary phase for both flask and fermentor cultures. According to oral toxicity test of Gallena mellonella by Xenorhabdus nematophilus, the addition of cell pellets into feed inhibited normal growth of insect larvae and killed completely then after 20 days cultivation. When culture supernatant of this strain was injected into hemolymph of insect larva, the toxicity was strongest at 24hr cultivation in the early exponential phase and gradually decreased as the culture time proceeded.

  • PDF