• Title/Summary/Keyword: swirl ratio

Search Result 331, Processing Time 0.021 seconds

Correlations among Different Tumble Measuring Methods and Significance of Tumble Ratios from Steady Flow Rig on SI Engine Combustion (엔진대상시험을 통한 텀블측정방식의 상관성 및 유의성에 관한 연구)

  • Lee, Si-Hun;Kim, Myoung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.43-49
    • /
    • 2006
  • Optimizing in-cylinder flow such as tumble or swirl is one of the key factors to develop better internal combustion engines. Especially, the tumble, which is more dominant flow in current high performance gasoline engines, has significant effects on the fuel consumptions and exhaust emissions under part load conditions. The first step for the tumble optimization is to find an accurate but cost-effective way to measure the tumble ratio. From this point of view, tumble ratios from three different measuring methods were compared and correlated in this research. Steady flow rig, water rig, and PIV were utilized for that purpose. Engine dynamometer test was also performed to find out the effect of the tumble. The results show that the tumble ratios from those methods are well correlated and that the steady flow rig is the effective method to measure the tumble despite its limitations.

A Study on Nitric Oxide Formation & Reduction in Industrial Burner (I) -NO Concetration-Distribution in Double Swirling Diffusion Flame by LIF- (산업용 고부하버너 연소에서의 $NO_x$ 형성 및 저감에 관한 연구(I)-레이저 유도 형광법(LIF)를 이용한 이중선회 확산화염의 NO 농도 분포 측정-)

  • 박경석;김경수
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.379-386
    • /
    • 2001
  • This experimental study deals with on Nitric Oxide Formation & Reduction in Industrial Bunner. In this study, Laser-induced fluorescence (LIF) techniques have been used for quantitative measurements of Nitric Oxide. The NO A-X (0, 0) Vibrational band around 226 nm was excited using a XeCl excimer-pumped dye laser. And on-line excitation used $P_{21}+Q_1(14.5)/R_{12}+Q_2(20.5)/P_1(23.5)$ transition, for minimizing the other interferential effect. The measurements were taken NO concentration distribution in double swirling diffusion flame. In this swirl burner, NO concentration in downstream fo the flame decrease as primary/secondary air ratio increases.

  • PDF

Development and Verification Test of a Bi-propellant Thruster Using Hydrogen Peroxide and Kerosene

  • Yu, I Sang;Kim, Tae Woan;Ko, Young Sung;Jeon, Jun Su;Kim, Sun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.270-278
    • /
    • 2017
  • This paper describes development procedure and verification test results of a bi-propellant thruster using hydrogen peroxide and kerosene. The design thrust of the thruster is about 500 N and six swirl type coaxial injectors were used. The passage type manifolds were employed for the injector head to reduce the response time. The passage was designed to minimize stagnation points and recirculation region to ensure uniform flow distribution and sufficient cooling performance through flow analysis using Fluent. A catalytic igniter using hydrogen peroxide was installed at the center of the injector head. The propellant feeding and spray characteristics were confirmed by hydraulic tests. Combustion tests were performed on design and off-design points to analyze combustion characteristics under various mixture ratio conditions. The combustion test results show that combustion efficiency was over 95 % and chamber pressure fluctuation were less than 1.5 % under all test conditions.

Flame Stability and NOx Formation by Micro scale Turbulence (마이크로 스케일 난류에 의한 화염안정성 및 NOx 생성)

  • Kim, I.S.;Seo, J.M.;Lee, G.S.;Lee, C.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.57-62
    • /
    • 2001
  • The effect of micro scale turbulence on flame structure and stability were experimentally investigated by changing the area of micro turbulence generator(MTG) and air velocity in terms of low NOx and high efficiency combustion. NOx and CO concentration were also measured for different MTG areas to investigate whether a vane swirler having MTG has a possibility of using as part for low NOx combustor. From the obtained results, it is shown that flame stability region increases and flame size becomes small as MTG area increases since MTG in itself makes small scale recirculation flow and swirler does large scale recirculation one. It is also shown that low NOx concentration(about 20${\sim}$30ppm@$O_2$ 11%) is achieved for all MTG areas without any increase in CO concentration regardless of air velocity range tested in this study when the equivalence ratio is 0.7. The results obtained in this study can give basic guideline for the design of compact low NOx high efficiency combustor using a vane swirler having MTG.

  • PDF

Numerical Study for the Design of Biogas-fired Low Emission Cyclone Incinerator (바이오 가스 소각용 저공해 사이클론 소각기 개발을 위한 수치 해석적 연구)

  • 전영남;김시욱;백원석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.401-410
    • /
    • 2002
  • Concerns for energy conservation, environmental pollution, and the fact that organic wastes account for a major portion of our waste materials, have created the interest of biogas, which usually contains about 60 to 70 percent methane, 30 to 40 percent carbon dioxide, and other gases, including ammonia, hydrogen sulfide, mercaptans and other noxious gases. Cyclone combustors are used for homing a wide range of fuels such as low calorific value gas, waste water, sludge. coal, etc. The 3-dimensional swirling flow, combustion and emission in a tangential inlet cyclone incinerator under different inlet conditions are simulated using a standard k-s turbulence model and ESCRS (Extended Simple Chemically-Reacting System) model. The commercial code Phoenics Ver.3.4 was used for the present work. The main parameters considered in this work are inlet velocity and air to fuel ratio. The results showed that the change of operating conditions had an influence on the shape and size of recirculation zones, mixture fraction and axial velocity which are important factors for combustion efficiency and emission behavior. The application of this kind of computer program seams to be promising as a potential tool for the optimum design of a cyclone combustor with low emission.

An Experimental Study about The Effect of Solid Particle Seeding on Thermal Characteristics of Hydrogen Flame (고체 입자첨가가 수소화염의 열특성에 미치는 영향에 관한 실험적 연구)

  • Kim, Jung-Ju;Baek, Seung-Wook;Kim, Han-Seok;Choi, Joon-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1503-1512
    • /
    • 2002
  • From the view of the environmental protection against the use of fossil fuels, a great of efforts have been exerted to find an alternative energy source. Hydrogen may become an alternative However the product species of the hydrogen flame is only $H_2O$, which emits only non-luminous radiation so the radiation from it is much smaller than that for a hydrocarbon flame. In this study, the authors designed and fabricated a laboratory scale test furnace to study thermal characteristics of hydrogen-air diffusion flame. In addition. the effects of addition of reacting as welt as non-reacting solid particles were experimentally investigated. Among the total heat flux to the wall, about 75 % was occupied by radiation while 25% by convection. When the aluminum oxide (Al$_2$O$_3$) particles were added, the radiative heat flux was reduced due to heat blockage effects. On the other hand, the total as well as the radiative heat flux was increased when the carbon particles were seeded, since the overall temperature increased. The effects of swirl and excess air ratio were also examined.

Average Droplet Size Distribution of a GDI Spray by Simultaneous Fluorescence/Scattering Image Technique (형과/산란광 동시 측정에 의한 GDI 분무의 평균 입경 분포에 관한 연구)

  • Gwak, Su-Min;Ryu, Gyeong-Hun;Choe, Dong-Seok;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.868-875
    • /
    • 2001
  • The objective of this study is to investigate the average droplet size distributions of a GDI spray by simultaneous fluorescence/scattering image technique. GDI engine is recently very popular because of high engine efficiency and low emissions. However, the injectors must have good spray characteristics because the fuel is directly injected into the cylinder. The fuel mixtures used in this study were 2% of fluorobenzene, 9% of DEMA(diethyl-methyl-amine) and 89% of hexane by volume. The system for obtaining 2-D fluorescence/scattering images of fuel spray was constituted of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the fluorescence to the scattering intensities, SMD distributions were obtained. SMD measured by the technique was compared with that obtained by PDA. It was found that average droplet size was bigger at spray center in the early stage of injection and at the outer periphery of the spray in the late stage of injection.

A Study on the Optimization of Cylinder Head Port Flow for Hyundai H21/32 Medium-Speed Diesel Engines (현대 H21/32 중속 디젤엔진 실린더 헤드포트 최적화 연구)

  • Kim, Byung-Yoon;Kim, Jin-Won;Ghal, Sang-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.806-811
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly effected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. In this study, two approach methods were used for design intake and exhaust port; experiment and computation which were made by using steady flow test rig and commercial CFD code. This paper presents the results of an experimental and analytical investigation of steady flow through the prototype cylinder head ports and valves of the HHI's H21/32 HIMSEN Engine.

  • PDF

A Fundamental Study of the Subsonic Spiral Jet (아음속 스파이럴 제트 유동에 관한 기초적 연구)

  • Cho, Wee-Bun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.502-507
    • /
    • 2003
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of convergent nozzle. The objective of the present study is to understand the flow characteristics of the spiral jet, using a computational method. A finite volume scheme is used to solve 3-dimensional Navier-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The computational results are validated by the previous experimental data. It is found that the spiral jet is generated by coanda effect at the inlet of the convergent nozzle and its fundamental features are dependent the pressure ratio of the radial flow through the annular slit and the coanda wall curvature.

  • PDF

A Study about The Effect of Radiation on Particle-Seeding Hydrogen Flame (고체입자의 수소화염에 있어서의 열복사에 관한 연구)

  • Choi, Joon-Won;Baek, Seung-Wook;Kim, Jung-Ju;Kim, Han-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.129-139
    • /
    • 2002
  • From the view of the environmental protection against the use of fossil fuels, a great of efforts have been exerted to find an alternative energy source. Hydrogen may become an alternative. However the product species of the hydrogen flame is only $H_2O$, which emits only non-luminous radiation so the radiation from it is much smaller than that for a hydrocarbon flame. In this study, the authors designed and fabricated a laboratory scale test furnace to study thermal characteristics of hydrogen-air diffusion flame. In addition, the effects of addition of reacting as well as non-reacting solid particles were experimentally investigated. Among the total heat flux to the wall, about 75% was occupied by radiation while 25 % by convection. When the aluminum oxide ($Al_2O_3$) particles were added, the radiative heat flux was reduced due to heat blockage effects. On the other hand, the total as well as the radiative heat flux was increased when the carbon particles were seeded, since the overall temperature increased. The effects of swirl and excess air ratio were also examined.

  • PDF