• Title/Summary/Keyword: swelling and pasting properties

Search Result 85, Processing Time 0.026 seconds

Comparison on Physicochemical Properties of Amaranth Starch with Other Waxy Cereal Starches (아마란스 전분과 곡류 찰전분의 특성 비교)

  • Lee, Jae-Hak;Kim, Sung-Ran;Song, Ji-Young;Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.612-618
    • /
    • 1999
  • Physicochemical properties of amaranth starch were compared with those of waxy rice and waxy corn starches. Amaranth starch granules vary from $1.1{\sim}1.9\;{\mu}m$ in diameter and are polygonal in shape. Total amylose contents from waxy rice, waxy corn and amaranth starches were 0.01, 0.03 and 0.07%, respectively. Swelling power of amaranth starch granule was slightly different from waxy rice. The swelling power of amaranth increased at $70^{\circ}C$. X-ray diffraction patterns of amaranth and other waxy cereal starches showed an A-type crystalline structure. Relative crystallinities of their starches were similar. According to pasting properties by Rapid Visco-Analyzer, amaranth starch showed a very high gelatinization temperature $(75.1^{\circ}C)$ and lower viscosity and higher stability than other waxy cereal starches during heating and cooling cycle. Peak onset temperatures (To) of starches from waxy rice, waxy corn and amaranth in DSC thermograms were $58.7{\sim}64.0$, 67.2 and $71.5^{\circ}C$, respectively, and their peak enthalpies were similar. Enthalpy of reheated amaranth starch after 3 day storage at $4^{\circ}C$ was higher than those of waxy corn and rices starchs.

  • PDF

Comparison of rice flour properties of different cultivars using wet and dry milling processes

  • Park, Jiyoung;Lee, Seuk-Ki;Park, Hye-Young;Choi, Hye-Sun;Cho, Dong-Hwa;Han, Sang-Ik;Lee, Kyung Ha;Oh, Sea-Kwan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.286-286
    • /
    • 2017
  • We conducted to compare the characteristics of rice flours according to the different milling processes. Five rice varieties (Oryza sativa L.) with different amylose content were prepared by wet and dry milling processes. The moisture contents of wet-milled rice flours (WMR) was mostly three-time higher than those of dry-milled flours (DMR). Water absorption index (WAI), water solubility index (WSI) and swelling power (SP) increased in proportion to temperature ($50-90^{\circ}C$). WAI, WSI, SP of DMR showed higher value than those of WMR. Baeokchal (BOC) which is waxy rice cultivar was significantly high level of WSI. Pasting properties of DMR except BOC cultivar resulted in higher peak viscosity, trough viscosity, final viscosity and Setback. The levels of resistant starch in the four cultivars except Dodamssal (DDS) were under 1% irrespective of Milling processes, whereas the resistant starch contents of DMR and WMR in DDS was 9.18 and 6.27, respectively. Damaged starch content of WMR were less than those of DMR, moreover, negative correlation was observed between amylose content and damaged starch of rice cultivars. These results suggest that the properties of rice flour varied depending on the milling methods and varieties, and it could be a reference for selecting the appropriate processing purposes.

  • PDF

Effect of Water Activity on the Physicochemical Properties of Sweet Potato Starch during Storage (저장 중 수분활성이 고구마 전분의 이화학적 특성에 미치는 영향)

  • Baek, Man-Hee;Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.532-536
    • /
    • 1995
  • Effect of water activity $(0.32{\sim}0.89)$ on the physicochemical properties of sweet potato starch during the storage for 5, 15 and 30 days at $40^{\circ}C$ was investigated. Shapes and sizes of starch granules were not changed. X-ray diffraction patterns of the starches appeared equally Ca-crystal structure. Sorption isotherm with storage day was sigmoidal. A slight loss of iodine affinity, increase in water binding capacity, and decrease in swelling power at $80^{\circ}C$ occurred as water activities increased. Viscosity pattern under Brabender Amylogram was not significantly changed with water activity, but initial pasting temperature decreased as water activity increased. The viscosity at $50^{\circ}C$, consistency and setback were increased with increasing storage day and water activity.

  • PDF

Physicochemical properties of naked barley starches (쌀보리 전분의 이화학적 성질)

  • Song, Eun;Shin, Mal-Shick
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.94-101
    • /
    • 1991
  • Physicochemical properties of waxy and non-waxy naked barley starches were investigated. The starch granules observed by photomicroscope, polarized-light microscope and scanning electron microscope were round. The starch showed a typical A type by X-ray diffraction pattern. Water binding capacity, swelling power and solubility of waxy naked barley starch were higher than non-waxy naked barley starch at the same temperature. Transmittance of 0.1% starch suspension was increased rapidly from $60^{\circ}C$ in case of waxy naked barley starch and from $65^{\circ}C$ in case of non-waxy naked barley starch. Amylogram revealed that the non-waxy naked barley starches had higher initial pasting temperature than waxy naked barley starch. Enthalpy for gelatinization of non-waxy and waxy naked barley starches were 1.12-1.58 and 0.85 cal/g, respectively.

  • PDF

Pasting Properties and Gel Strength of Non-Waxy Rice Flours Prepared by Heat-Moisture Treatment (수분-열처리로 제조한 멥쌀가루의 호화 특성과 겔 강도)

  • Seo, Hye-In;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.196-204
    • /
    • 2011
  • Heat-moisture treatment (HMT) was applied to 4 samples of rice flours, Goami (GM), Taeguk (TG), Choochung (CC) and Koshihikari (KSHK), of which amylose contents were 31.5, 32.3, 24.3, and 23.3%, respectively. Wet-milled rice flours were dried, moisture content adjusted to 21, 24, 27 and 30%, respectively, and autoclaved at 100 and $105^{\circ}C$ for 30~90 min. The changes on swelling, solubility, RVA (rapid visco analyser) paste viscosities and gel strength were observed. In GM and TG, peak viscosity (PV) and breakdown (BD) decreased and no peak appeared as moisture and treatment time increased by HMT. In CC, FV increased notably with big increase of PV and setback (SB) by HMT compared to the other rice flours. BD in all the samples decreased as moisture, temperature, and time increased by HMT. RVA pasting properties of HMT GM and HMT TG were changed remarkably under conditions of moisture 21%, $100^{\circ}C$ and 30 min whereas for HMT CC and HMT KSHK, higher temperature or more time was required at the same mois ture levels. The swelling power, solubility and gel strength increased by HMT. Gel strength correlated positively with SB (r=0.78, p<0.01) and negatively with BD (r=-0.71, p<0.01) and PV (r=-0.36, p<0.05) resulting from strengthening the structure of starch granules in rice flours by HMT.

Gelling Characteristics of Mung Bean Starch Supplemented with Gelatin and Isolated Soy Protein (젤라틴, 분리대두단백 첨가가 녹두전분의 겔특성에 미치는 영향)

  • Choi, Eun Jung;Oh, Myung Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.6
    • /
    • pp.664-673
    • /
    • 2013
  • This study was conducted to investigate the physicochemical properties of mung bean starch and the quality characteristics of mung bean starch gels supplemented with gelatin and isolated soy protein (0, 2, 5%) during storage at $5^{\circ}C$ for 0, 24, 48, and 72 hours. The swelling power of mung bean starch supplemented with gelatin did not significantly change, whereas those supplemented with isolated soy protein (ISP) significantly increased. The solubility of mung bean starch supplemented with gelatin and ISP, however, significantly increased with increasing concentration. In addition, the soluble amylose and soluble carbohydrate of mung bean starch supplemented with gelatin and ISP significantly decreased with increasing concentration. In terms of pasting properties measured by the Rapid Visco Analyzer (RVA), the pasting temperature of mung bean starch supplemented with gelatin and ISP was not significantly different, whereas peak viscosity, minimum viscosity, final viscosity, breakdown, and consistency decreased. DSC thermograms showed that the onset temperature of mung bean starch supplemented with gelatin and ISP did not significantly change, whereas the enthalpy increased with the addition of 5% ISP. The lightness (L) and redness (a) of mung bean starch gels supplemented with gelatin, ISP, and without additives increased during cold storage, whereas the yellowness (b) decreased. The addition of gelatin and ISP suppressed changes in L, a and b of mung bean starch gel during cold storage. Synereses of mung bean starch gel supplemented with gelatin and ISP was lower than that without additives, with the addition of gelatin suppressing synereses more than ISP. The addition of gelatin and ISP also suppressed increases in hardness, chewiness, and gumminess of mung bean starch gels during cold storage. In the sensory evaluation, the addition of gelatin and ISP suppressed increases in hardness and brittleness of mung bean starch gels during cold storage. The addition of 2%, 5% gelatin and 2% ISP also suppressed a decrease in the overall acceptability of mung bean starch gels during 24-48 hr cold storage. Thus, the addition of 2-5% gelatin and 2% ISP to mung bean starch is appropriate for suppressing the quality deterioration of 24-48 hr cold-stored mung bean starch gels.

Effects of heat-moisture treatment on functional properties of high amylose rice starches with different crystalline types (결정형이 다른 고아밀로스 쌀 전분의 기능적 성질에 수분열처리 효과)

  • Huang, Mengyao;No, Junhee;Shin, Malshick
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.31-39
    • /
    • 2020
  • The effects of heat-moisture treatment (HMT) on the functional properties of high amylose rice starches (HARSes) purified from Korean rice varieties (A-type Goami and Singil and B-type Dodamssal and Goami2) were investigated. HMT was accomplished with moisture contents of 18 and 27% and heated at 100℃ for 16 h. While the amylose content, swelling power and solubility decreased after HMT, the water binding capacity and resistant starch (RS) content increased with increasing moisture content after HMT. The X-ray diffraction patterns of all HARSes did not change after HMT, but a decrease in the intensity of peak at 2θ=5° was observed in B-type HMT HARSes. While the starch granules aggregated after HMT, their shape and size remained unchanged. B-type HARSes exhibited higher gelatinization temperatures and lower pasting viscosities than A-type HARSes following HMT. The results, thus, suggest that while the crystalline intensity of B-type Dodamssal and Goami2 rice starches did not change after HMT, the RS content, water binding capacity, and pasting temperatures of all HARSes increased with increasing moisture content after HMT.

Physico-chemical Properties of Bracken (Pteridium aquilinum) Root Starch - II. Physical Properties- (고사리(Pteridium aquilinum) 뿌리 전분의 이화학적 특성에 관한 연구 -제2보 : 전분의 물리적 특성-)

  • Jo, Jae-Sun;Kim, Sung-Kon;Lee, Ke-Ho;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.133-141
    • /
    • 1981
  • The gelatinization phenomena of bracken root starch were examined by means of the loss of birefringence, degree of digestibility by amylase and X-ray diffraction. These results indicated that gelatinization temperature of the starch was $55{\sim}60^{\circ}$ and over 95% of starch were gelatinized at the temperature between 60 and $70^{\circ}C$. The swelling power of the bracken root starch was much less steeper than that of potato or tapioca starch. Amylograph data on the various starch concentrations showed the pasting temperature of $62{\sim}68^{\circ}$, peak height of $80{\sim}840$ Brabender unit (BU) and peak after cooling to $50^{\circ}C$ of $110{\sim}555\;BU.$. According to the information obtained from amylograph data, the bracken root starch showed low set back. The rate of retrogradation of the starch as tested by Texturometer was slower and faster than that of potato and tapioca starches, respectively.

  • PDF

Properties of Starch Isolated from Wet-milled Rice after Steeping at Elevated Temperatures for Annealing Effect (Annealing 수침처리에 따른 습식제분 쌀가루의 전분 특성)

  • Lee, Young-Tack;Yoo, Moon-Sik;Lee, Bo-Ram;Park, Jong-Hyun;Chang, Hak-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.393-397
    • /
    • 2004
  • Rice was steeped at elevated temperatures of $40,\;50,\;or\;60^{\circ}C$ for 2 hr, and physicochemical properties of starches isolated from wet-milled rice flour were investigated. Steeping at elevated temperatures slightly decreased lightness of rice starch, while increased yellowness and redness. Average granule size of rice starch was decreased by steeping treatment. Swelling power and solubility increased as temperature increased. Starch from rice steeped at $40^{\circ}C$ displayed highest swelling power and solubility. Differential scanning calorimetry data of starch obtained from steeped rice at $60^{\circ}C$ showed increased onset and peak temperatures, with narrower gelatinization temperature range, suggesting partial annealing effect. Pasting properties of starch measured by Rapid Visco-Analyzer indicated increased peak viscosity due to rice steeping at $40^{\circ}C$. Peak and breakdown viscosities decreased at $50\;and\;60^{\circ}C$, whereas setback and final viscosities increased.

Physicochemical Properties of Defatted Nonwaxy and Waxy Rice Starches (탈지한 멥쌀과 찹쌀 전분의 이화학적 특성)

  • Kim, Soo-Kyung;Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.347-352
    • /
    • 1992
  • Physicochemical properties of native and defatted nonwaxy(Dongjin byeo) and waxy(Sinseunchalbyeo) rice starches were investigated. The granule shapes of rice starches were polygonal and X-ray diffraction patterns were A types, but relative crystallinity was decreased by defatting. The amylose content of defatted starches slightly increased, but water binding capacity of defatted starches decreased. Swelling power and solubility of starches increased with the increase of temperature, at each temperature increased by defatting. Transmittance of Dongjinbyeo and Sinseunchalbyeo starch suspensions showed a rapid increase at $60{\sim}65^{\circ}C$, $55{\sim}60^{\circ}C$ respectively. The initial pasting temperature by amylograph of Dongjinbyeo and Sinseunchalbyeo starches were $66^{\circ}C$ and $64^{\circ}C$, respectively. The gelatinization temperature of defatted starches was higher than that of the nondefatted starches. Dongjinbyeo starch decreased peak viscosity and breakdown by defatting, but Sinseunchalbyeo starch unchanged.

  • PDF