• Title/Summary/Keyword: sustainable waste glass

Search Result 14, Processing Time 0.021 seconds

Estimation of splitting tensile strength of modified recycled aggregate concrete using hybrid algorithms

  • Zhu, Yirong;Huang, Lihua;Zhang, Zhijun;Bayrami, Behzad
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.389-406
    • /
    • 2022
  • Recycling concrete construction waste is an encouraging step toward green and sustainable building. A lot of research has been done on recycled aggregate concretes (RACs), but not nearly as much has been done on concrete made with recycled aggregate. Recycled aggregate concrete, on the other hand, has been found to have a lower mechanical productivity compared to conventional one. Accurately estimating the mechanical behavior of the concrete samples is a most important scientific topic in civil, structural, and construction engineering. This may prevent the need for excess time and effort and lead to economic considerations because experimental studies are often time-consuming, costly, and troublous. This study presents a comprehensive data-mining-based model for predicting the splitting tensile strength of recycled aggregate concrete modified with glass fiber and silica fume. For this purpose, first, 168 splitting tensile strength tests under different conditions have been performed in the laboratory, then based on the different conditions of each experiment, some variables are considered as input parameters to predict the splitting tensile strength. Then, three hybrid models as GWO-RF, GWO-MLP, and GWO-SVR, were utilized for this purpose. The results showed that all developed GWO-based hybrid predicting models have good agreement with measured experimental results. Significantly, the GWO-RF model has the best accuracy based on the model performance assessment criteria for training and testing data.

The Water Quality and Purification Load Assessment of Drain Water of Facility Horticulture Areas (시설원예 배출 배액의 수질환경 평가 및 정화 부하량 산정)

  • Son, Jinkwan;Choi, Dekkyu;Kong, Minjae;Yun, Sungwook;Park, Minjung;Kang, Donghyeon
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1199-1208
    • /
    • 2019
  • Korea's protected horticulture is rapidly increasing in scale due to various advantages such as year-round harvesting, labor savings through automation and shortened culture period, and greater income generation. This study was conducted to investigate the impact of protected horticulture on water quality. The results of this study are expected to provide basic data contributing to improvements towards sustainable agriculture and eco-friendly design of protected horticulture complex. The average T-N and T-P loads from vinyl greenhouses were 286.55± 143.98 mg/L and 59.14±13.77 mg/L, respectively and those from glass greenhouses 380.68 ± 150.41 mg/L and 61.85±20.72 mg/L. The annual discharge of wastewater derived from the monthly discharge from the horticulture greenhouses were estimated at 2597 ton/ha, with the annual phosphorus load amounting to 155.3 kg/ha. The average T-N and T-P loads in the tested greenhouse effluents were in excess of 8.3- and 13.5-fold the standards for the Korean wastewater plant effluent. The waste nutrient solution discharged from a protected horticulture complex can cause water contamination. Therefore, there is a need to conduct follow-up research using a water purification system or a trench method to develop a eco-friendly protected horticulture complex for sustainable agriculture.

Prediction models of compressive strength and UPV of recycled material cement mortar

  • Wang, Chien-Chih;Wang, Her-Yung;Chang, Shu-Chuan
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.419-427
    • /
    • 2017
  • With the rising global environmental awareness on energy saving and carbon reduction, as well as the environmental transition and natural disasters resulted from the greenhouse effect, waste resources should be efficiently used to save environmental space and achieve environmental protection principle of "sustainable development and recycling". This study used recycled cement mortar and adopted the volumetric method for experimental design, which replaced cement (0%, 10%, 20%, 30%) with recycled materials (fly ash, slag, glass powder) to test compressive strength and ultrasonic pulse velocity (UPV). The hyperbolic function for nonlinear multivariate regression analysis was used to build prediction models, in order to study the effect of different recycled material addition levels (the function of $R_m$(F, S, G) was used and be a representative of the content of recycled materials, such as fly ash, slag and glass) on the compressive strength and UPV of cement mortar. The calculated results are in accordance with laboratory-measured data, which are the mortar compressive strength and UPV of various mix proportions. From the comparison between the prediction analysis values and test results, the coefficient of determination $R^2$ and MAPE (mean absolute percentage error) value of compressive strength are 0.970-0.988 and 5.57-8.84%, respectively. Furthermore, the $R^2$ and MAPE values for UPV are 0.960-0.987 and 1.52-1.74%, respectively. All of the $R^2$ and MAPE values are closely to 1.0 and less than 10%, respectively. Thus, the prediction models established in this study have excellent predictive ability of compressive strength and UPV for recycled materials applied in cement mortar.

Valorization of Pineapple Peel Waste for Sustainable Polyhydroxyalkanoates Production

  • Kannika Bunkaew;Kittiya Khongkool;Monthon Lertworapreecha;Kamontam Umsakul;Kumar Sudesh;Wankuson Chanasit
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.257-267
    • /
    • 2023
  • The potential polyhydroxyalkanoates (PHA)-producing bacteria, Bacillus megaterium PP-10, was successfully isolated and studied its feasibility for utilization of pineapple peel waste (PPW) as a cheap carbon substrate. The PPW was pretreated with 1% (v/v) H2SO4 under steam sterilization and about 26.4 g/l of total reducing sugar (TRS) in pineapple peel hydrolysate (PPH) was generated and main fermentable sugars were glucose and fructose. A maximum cell growth and PHA concentration of 3.63 ± 0.07 g/l and 1.98 ± 0.09 g/l (about 54.58 ± 2.39%DCW) were received in only 12 h when grown in PPH. Interestingly, PHA productivity and biomass yield (Yx/s) in PPH was about 4 times and 1.5 times higher than in glucose. To achieve the highest DCW and PHA production, the optimal culture conditions e.g. carbon to nitrogen ratios of 40 mole/mole, incubation temperature at 35℃ and shaking speed of 200 rpm were performed and a maximum DCW up to 4.24 ± 0.04 g/l and PHA concentration of 2.68 ± 0.02 g/l (61% DCW) were obtained. The produced PHA was further examined its monomer composition and found to contain only 3-hydroxybutyrate (3HB). This finding corresponded with the presence of class IV PHA synthase gene. Finally, certain thermal properties of the produced PHA i.e. the melting temperature (Tm) and the glass transition temperature (Tg) were about 176℃ and -4℃, respectively whereas the Mw was about 1.07 KDa ; therefore, the newly isolated B. megaterium PP-10 is a promising bacterial candidate for the efficient conversion of low-cost PPH to PHA.