• Title/Summary/Keyword: sustainable structural design

Search Result 127, Processing Time 0.025 seconds

Evolution of Tall Building Structures with Perimeter Diagonals for Sustainable Vertical Built Environments

  • Kyoung Sun Moon
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.307-320
    • /
    • 2023
  • Tall buildings are built with an abundant amount of materials, including structural materials, coming from our limited natural resources. Tall buildings that began from about 10-story tall office towers have evolved to over 150-story tall mixed-use megastructures. As a building becomes taller, structural material requirement to resist lateral wind loads becomes exponentially larger. Therefore, it is crucial to employ efficient structural systems and optimize their design, which will contribute to sustainable vertical built environments through preservation of resources. Tube type structures with large perimeter diagonals are among the most efficient structural systems for tall buildings. Developments of braced tube, braced megatube, diagrid structures, and their optimal design strategies are reviewed. Superframed conjoined towers, produced by interconnecting multiple clustered braced tubes, are presented as a new design direction to achieve not only structural but also architectural and social sustainable design goals.

Optimum design of a walking tractor handlebar through many-objective optimisation

  • Mahachai, Apichit;Bureerat, Sujin;Pholdee, Nantiwat
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.273-281
    • /
    • 2017
  • In this work, a comparative study of multi-objective meta-heuristics (MOMHs) for optimum design of a walking tractor handlebar is conducted in order to reduce the structural mass and increase structural static and dynamic stiffness. The design problem has objective functions as maximising structural natural frequencies, minimising structural mass, bending deflection and torsional deflection with stress constraints. The problem is classified as a many-objective optimisation since there are more than three objectives. Design variables are structural shape and size. Several well established multi-objective optimisers are employed to solve the proposed many-objective optimisation problems of the walking tractor handlebar. The results are compared whereas optimum design solutions of the walking tractor handlebar are illustrated.

Superframed Conjoined Towers for Sustainable Megatall Buildings

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.179-191
    • /
    • 2021
  • Tall buildings have generally been developed as solo towers. With the increase of the heights of tall buildings from about 10-story buildings to supertall and megatall buildings, their structural systems have evolved from interior structures to exterior structures and combined/mixed systems. This paper reviews structural systems developed for solo supertall and megatall buildings and discusses the challenges they face in terms of structural performance and architectural design as the building heights are ever increased. As a viable and more sustainable design alternative to extremely tall solo towers, superframed conjoined towers are presented. Their structural performances are investigated in comparison with solo tower structures. Further, architectural potentials of superframed conjoined towers are explored through design studies.

Development of Upcycling Design Through Structural Transformation of Used Denim Clothing -Centered Around Liu Qing's Methodology of Structural Transformation- (중고 데님 의류의 구조 변형을 통한 업사이클링 디자인 개발 -Liu Qing의 구조 변형법 적용을 중심으로-)

  • Xiaofang Li;Youngjae Lee
    • Journal of Fashion Business
    • /
    • v.28 no.1
    • /
    • pp.1-19
    • /
    • 2024
  • This study explores application of upcycling design methods in structural transformation of second-hand denim clothing, aiming to achieve sustainable design objectives. By drawing inspiration from Liu Qing's research methods in the field of circular utilization of denim clothing, this study collected and analyzed cases of structural transformation of used denim clothing from 2020 to 2023. It summarized structural transformation design methods for used denim clothing. Through the development of design works, this study aims to find out the best upgrading and renovation design strategy by applying the method of structural renovation design. This study aims to support the development of a sustainable fashion industry and promote recycling and upcycling of discarded clothing fabrics, thereby reducing resource waste and environmental impact.

Options for sustainable earthquake-resistant design of concrete and steel buildings

  • Gilmore, Amador Teran
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.783-804
    • /
    • 2012
  • Because of its large contribution to the environmental instability of the planet, the building industry will soon be subjected to a worldwide scrutiny. As a consequence, all professionals involved in the building industry will need to create a professional media in which their daily work adequately solves the technical issues involved in the conception, design and construction of concrete and steel buildings, and simultaneously convey care for the environment. This paper discusses, from the point of view of a structural engineer involved in earthquake-resistant design, some of the measures that can be taken to promote the consolidation of a building industry that is capable of actively contributing to the sustainable development of the world.

A Study on Sustainable Tall Building by Rating System and Incentive Policy through Case Study (해외사례조사를 통해 본 친환경 인증 초고층 빌딩과 인센티브정책에 관한 연구)

  • Kim, Hyeong Il;Shin, Sung Woo
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.81-88
    • /
    • 2010
  • Current trend on sustainable tall building shows significant efforts on the integrated design approaches for the performative design to achieve efficient building for the energy, structural and materials. The design of tall buildings should take into consideration of environmental impact and economic benefits from sustainable approaches to ensure low energy consumption and CO2 emissions. Designing sustainable tall building require concerns and comprehensive understanding of sustainable building technology, sustainable rating system and supporting incentive policy. The research has been conducted on available rating system and the incentive policy for sustainable building design methodology through cases studies for this study. In the paper, author tried to emphasis the role of the incentive policy for the sustainable building and provides survey of the impact on rating, adaptable use of sustainable building technology on the current practice of tall building design.

Conjoined Towers for Livable and Sustainable Vertical Urbanism

  • Moon, Kyoung Sun;de Oliveira Miranda, Miguel Darcy
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.387-396
    • /
    • 2020
  • While tall buildings are an essential building type to accommodate an ever-growing urban population, as buildings become taller and taller, many design challenges arise. As floor spaces are repeated vertically, the occupants' natural horizontal circulation-based social interactions are limited. As buildings become ever taller, safe evacuation to the ground level becomes more challenging in emergencies. With respect to safety as well as serviceability, one of the most fundamental design challenges of exceedingly tall buildings is their structural systems that make the physical existence of tall buildings possible. While many different design solutions can be sought to resolve these issues as well as other design challenges of extremely tall buildings, this paper investigates the potential of conjoined towers to create more livable and sustainable vertical environments. Emphasis is placed on the social and structural capabilities of conjoined towers in providing enhanced social interactions and more efficient ultra-tall structures. The related brief history of conjoined towers is presented. To understand their current status, contemporary design practices of conjoined towers are discussed. Lastly, a new concept of superframed conjoined towers developed for exceedingly tall building complexes is introduced through design studies. Though envisioning future tall buildings is challenging, conjoined towers can be among the strong candidates toward more livable and sustainable vertical urbanism.

Sustainable retrofit design of RC frames evaluated for different seismic demand

  • Zerbin, Matteo;Aprile, Alessandra
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1337-1353
    • /
    • 2015
  • Seismic upgrading of existing structures is a technical and social issue aimed at risk reduction. Sustainable design is one of the most important challenges in any structural project. Nowadays, many retrofit strategies are feasible and several traditional and innovative options are available to engineers. Basically, the design strategy can lead to increase structural ductility, strength, or both of them, but also stiffness regulation and supplemental damping are possible strategies to reduce seismic vulnerability. Each design solution has different technical and economical performances. In this paper, four different design solutions are presented for the retrofit of an existing RC frame with poor concrete quality and inadequate reinforcement detailing. The considered solutions are based on FRP wrapping of the existing structural elements or alternatively on new RC shear walls introduction. This paper shows the comparison among the considered design strategies in order to select the suitable solution, which reaches the compromise between the obtained safety level and costs during the life-cycle of the building. Each solution is worked out by considering three different levels of seismic demand. The structural capacity of the considered retrofit solutions is assessed with nonlinear static analysis and the seismic performance is evaluated with the capacity spectrum method.

A Development of Sustainable Interface Module for the Structural Design Information (지속 가능한 구조설계 정보의 인터페이스 모듈 개발)

  • Eom, Jin Up;Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.509-518
    • /
    • 2013
  • This study is aimed at developing of the sustainable interface module for structural design. It is dealt with the Midas/Gen for analysis and design and Tekla Structures for Building Information Modeling. In this research, it is improved the applicability and function of the existing interface module developed by authors. Although model information was functionally well linked by the existing module in both directions, the applicability is limited due to the difference of attributes between structural analysis model and structural detail model. In this study, we analyzed the problems that occur in existing module. We have developed the interface module to solve the problems and improved the applicability of the existing module.

Structural behaviors of sustainable hybrid columns under compression and flexure

  • Wu, Xiang-Guo;Hu, Qiong;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.857-873
    • /
    • 2014
  • Structural behaviors of a sustainable hybrid column with the ultra high performance cementitious composites (UHPCC) permanent form under compression and flexure were studied. Critical state and failure stage characters are analyzed for large and small eccentricity cases. A simplified theoretical model is proposed for engineering designs and unified formulas for loading capacity of the hybrid column under compression and flexure loads are derived, including axial force and moment. Non-linear numerical analysis is carried out to verify the theoretical predictions. The theoretical predictions agree well with the numerical results which are verified by the short hybrid column tests recursively. Compared with the traditional reinforced concrete (RC) column, the loading capacity of the sustainable hybrid column is improved significantly due to UHPCC confinements.