• Title/Summary/Keyword: sustainable biomass

Search Result 161, Processing Time 0.028 seconds

Cucumber Growth and Nitrogen Uptake as Affected by Solution Temperature and NO3-:NH4+ Ratios during the Seedling

  • Yan, Qiu-Yan;Duan, Zeng-Qiang;Li, Jun-Hui;Li, Xun;Dong, Jin-Long
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.393-399
    • /
    • 2013
  • The effect of solution temperature and nitrogen form on cucumber (Cucumis sativus L.) growth, photosynthesis and nitrogen metabolism was investigated in hydroponic culture. Cucumber plants were grown for 35 days in a greenhouse at three constant solution temperatures ($15^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$) within a natural aerial temperature ($15-30^{\circ}C$). Four nitrate:ammonium ($NO{_3}^-:NH{_4}^+$) ratios (10:0, 8:2, 5:5, and 2:8 $mmol{\cdot}L^{-1}$) at constant nitrogen (N) concentration of $10mmol{\cdot}L^{-1}$ were applied within each solution temperature treatment. Results showed an increasing solution temperature enhanced plant growth (height, dry weight, and leaf area) in most N treatments. Dry weight accumulation was greatest at the 10:0 $NO{_3}^-:NH{_4}^+$ ratio in the $15^{\circ}C$ solution, the 5:5 ratio in the $20^{\circ}C$ solution and the 8:2 ratio in the $25^{\circ}C$ solution. Photosynthetic rate (Pn) response to solution temperature and $NO{_3}^-:NH{_4}^+$ ratio was similar to that of plant growth. Probably, the photosynthate shortage played a role in the reduced biomass formation. Increasing solution temperature enhanced the nitrate reductase (NR) activity, and further reduced shoots nitrate content. Our results indicate that the optimal ratio of nitrate to ammonium that promotes growth in hydroponic cucumber varies with solution temperature.

Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

  • Dong, Lifeng;Gao, Yanhua;Jing, Xuelan;Guo, Huiping;Zhang, Hongsen;Lai, Qi;Diao, Qiyu
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1367-1378
    • /
    • 2022
  • Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.

Stock Assessment and Optimal Catch of Blackfin Flounder Glyptocephalus stelleri in the East Sea, Korea (한국 동해안 기름가자미(Glyptocephalus stelleri)의 자원평가 및 적정어획량 추정)

  • Sohn, Myoung Ho;Yang, Jae Hyeong;Park, Jeong-Ho;Lee, Haewon;Choi, Young Min;Lee, Jae Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.5
    • /
    • pp.598-606
    • /
    • 2013
  • The blackfin flounder Glyptocephalus stelleri is a commercially important species in the East Sea of Korea, but its catches and biomass have decreased gradually in recent years. This study estimated the optimal catch (acceptable biological catch, ABC) for the effective management of this species by estimating population ecology parameters and the stock biomass of blackfin flounder in the East Sea of Korea. The estimated instantaneous coefficient of total mortality (Z) of blackfin flounder was 1.0542/year, the survival rate (S) was 0.3485, and the instantaneous coefficient of natural mortality (M) was 0.3637/year. From the values of S and M, the instantaneous coefficient of fishing mortality (F) was calculated to be 0.6905/year. The age at first capture was 1.304 years, and the total length was 11.5 cm at that time. On the basis of these parameters, the annual biomass was estimated by a biomass-based cohort analysis using annual catch data in weight by year for 1991-2012 in the East Sea of Korea. The annual biomass peaked in 1997 at about 12,800 mt and then subsequently declined continuously to a level of 10,500 mt in 2004 and to 9,800 mt in 2011 and 2012. The maximum sustainable yield and $F_{0.1}$ were estimated as 3,547 mt and 0.3595/year, respectively. Using these estimations, the ABC was estimated to be 3,571 mt in tier 5, 3,397 mt in tier 4, and 2,622 mt in tier 3.

Digestion of settleable solids from recirculating fish tank as nutrients source for the microalga Scenedesmus sp. cultivation

  • Rotthong, Maneechotiros;Chiemchaisri, Wilai;Tapaneeyaworawong, Paveena;Powtongsook, Sorawit
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.377-382
    • /
    • 2015
  • The high concentration of nitrogen and phosphorus in wastewater incorporated with the ability to use carbon dioxide as the carbon source make the microalgae become more attractive in wastewater treatment process. This study evaluates the optimal conditions for the digestion of settelable solids from the recirculating aquaculture system to produce the biomass of the green microalga Scenedesmus sp. After solids separation, aerobic digestion of settleable solids under disperse condition produced nitrate as the final product of consequently ammonification and nitrification processes. With the optimal digestion procedure, nitrate concentration during aerobic digestion in 2000 mL vessel increased from $9.63{\pm}0.65mg\;N/L$ to $58.66{\pm}0.06mg\;N/L$ in 10 days. Thereafter, cultivation of Scenedesmus sp. was performed in 1000 mL Duran bottle with air bubbling. The highest Scenedesmus sp. specific growth rate of $0.321{\pm}0.01/d$ was obtained in treatment using liquid fraction after aerobic digestion as the whole culture medium for Scenedesmus sp. cultivation. With this study, digestion of $8,800{\pm}128.12mg\;dry\;weight/L$ of settleable solids from fish pond finally produced $1,235{\pm}21mg\;dry\;weight/L$ of Scenedesmus sp. biomass.

Study on the Size Reduction Characteristics of Miscanthus sacchariflorus via Image Processing

  • Lee, Hyoung-Woo;Lee, Jae-Won;Gong, Sung-Ho;Song, Yeon-Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.309-314
    • /
    • 2018
  • Size reduction is an important pre-processing operation for utilizing biomass as a sustainable resource in industrial-scale energy production and as a raw material for other industries. This work investigates the size reduction characteristics of air-dried Miscanthus sacchariflorus Goedae-Uksae 1 (Amur silver grass) via image processing and identifies the morphological characteristics of comminuted and screened M. sacchariflorus. At chopping lengths of 18, 40, 80, and 160 mm, 81%, 77%, 78%, and 76% of the particles, respectively, passed through a 4-mm sieve. Even a knife mill with a very small screen aperture (>1 mm) admitted over 10% of the particles. The average circularity and aspect ratio of the particles were <0.30 and >10, respectively. These results confirm that in all preparation modes, most M. sacchariflorus particles were needle-like in shape, irrespective of the type of preparation.

Promotion of the Overseas Biomass Plant Business for a Domestic Power Company (국내 발전기업의 해외 바이오매스 플랜트 사업진출 방향)

  • Kim, Yeongsang;Moon, Seungjae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.7 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • One of domestic power generation companies, Korea East-West Power Corporation(EWP) had no performance in overseas business just two short years ago. However, EWP has accomplished breakthrough results with the profit of KRW 17.8 billion in 2010, only overseas business part. With overseas power plant growing fast, there is a possibility that EWP may face the limitation of sustainable growth with the current low income structure, which is mainly focused on commissioning and power plant management. Accordingly, this study was made on overseas biomass plant business participation plan through the establishment of joint venture. The characteristics of a joint venture establishment was searched, choosing business partner; the ideas of how to organize a joint venture was drawn, what the role of each partner in joint venture is, and what proper capital share is; and chose business field, considering changing global energy mix, renewable energy market scale, and growth prospects. Considering government policy for renewable energy vitalization and renewable energy market share, We chose the European union as a market to which our business entered.

  • PDF

Bioenergy Crop Production and Research Trends (바이오에너지 원료작물 생산 및 연구동향)

  • Kim, Kwang-Soo;Kim, Young-Bum;Jang, Young-Seok;Bang, Jin-Ki
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • The increasing industrialization of the world has led to precipitous rise for the demand of petroleum-based fuels. The world is presently confronted with the twin crises of fossil fuel depletion and environmental pollution. The search for alternative fuels, which promise a harmonious correlation with sustainable development, energy conservation, efficiency and environmental preservation, has become highly pronounced in the present. Bioenergy is playing an increasingly important role as an alternative and renewable source of energy. Use of Bioenergy has several potential environmental advantages. The most important perhaps is reduction in life cycle greenhouse gases emissions relatives petroleum fuels, since bioenergy is derived from plants which convert Carbon dioxide ($CO_{2}$) into Carbohydrates in their growth. Bioenergy includes solid biomass, biomas and liquid bio-fuels which are fuels derived from crop plants, and include biomass that's directly burned. The two most important bio liquid fuels today are bioethanol from fermenting grain, grass, straw or wood, and biodiesel from plant seed oil.

Study on natural short-necked clam, Ruditapes philippinarum, stocks in Yeongheung coast of Wando Island, Korea (완도 영흥지선 연안의 천연 바지락 자원에 대한 연구)

  • Cho, Sang-Man;Lee, Jong Hwa
    • The Korean Journal of Malacology
    • /
    • v.28 no.2
    • /
    • pp.109-116
    • /
    • 2012
  • In order to understand the effect of introduction of oyster rack culture on natural short-necked clam, Ruditapes philippinarum, stock, we investigated the status of natural clam stock prior to introduction of oyster rack culture at Yeongheung Coast of Wando Island. The growth equation of the clam was estimated as: $L_t=61.46{\cdot}(1-e^{-0.172(t+0.155)})$ from ring radius composition of shell. Instantaneous coefficient of total mortality and natural mortality were calculated as: 2.4087/year and 0.478/year, respectively. The age at first capture was estimated to be 2.55 year. The total biomass was estimated to 3.23 ton in the bed (0.8 ha). Applied by these parameters, the annual recruit biomass and the current yield per recruit (Y/R) was corresponded to $114.7individuals/m^2$ and $92.0g/m^2$, respectively. Maximum sustainable yield (MSY) was estimated 0.77 ton/year which was close to annual catches, 0.74 ton/year, in the area.

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

Conversion of Organic Carbon in Food Processing Wastewater to Photosynthetic Biomass in Photo-bioreactors Using Different Light Sources

  • Suwan, Duangkamon;Chitapornpan, Sukhuma;Honda, Ryo;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • An anaerobic photosynthetic treatment process utilizing purple non-sulfur photosynthetic bacteria (PNSB) was applied to the recovery of organic carbon from food processing wastewater. PNSB cells, by-product from the treatment, have high nutrition such as proteins and vitamins which are a good alternative for fish feed. Effects of light source on performance of anaerobic photosynthetic process were investigated in this study. Two bench-scale photo-bioreactors were lighted with infrared light emitting diodes (LEDs) and tungsten lamps covered with infrared transmitting filter, respectively, aiming to supply infrared light for photosynthetic bacteria growth. The photo-bioreactors were operated to treat noodle-processing wastewater for 323 days. Hydraulic retention time (HRT) was set as 6 days. Organic removals in the photo-bioreactor lighted with infrared LEDs (91%-95%) was found higher than those in photo-bioreactor with tungsten lamps with filter (79%-83%). Biomass production in a 150 L bench-scale photo-bioreactor was comparable to a 8 L small-scale photo-bioreactor in previous study, due to improvement of light supply efficiency. Application of infrared LEDs could achieve higher treatment performance with advantages in energy efficiency and wavelength specifity.