• Title/Summary/Keyword: sustain discharge

Search Result 161, Processing Time 0.025 seconds

Effects of Dielectric Layer Thickness and Electrode Structures on High Xe AC-PDP (High Xe AC PDP에서 전극구조와 유전체 두께에 따른 방전 특성 분석)

  • Heo, Jun;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hea-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.237-242
    • /
    • 2012
  • In this paper, we investigated effects of ITO electrode geometry and dielectric layer thickness on the discharge Characteristic of AC PDP. As the dielectric thickness is decreased ($30{\sim}12{\mu}m$), firing and sustain voltage is decreased. Luminance and discharge power increase with decreasing dielectric layer thickness because of increasing capacitance between plasma and electrodes. Reactive power decreases with dielectric thickness due to reduced capacitance between sustain electrodes. For the high Xe test panel with small ITO electrode, luminous efficacy as well as luminance increase with decreasing dielectric layer thickness. This result suggest that high power density and small plasma volume is beneficial for high efficacy discharge.

Comparision Study Between Modeling and Experiment of the Breakdown Voltage for AC Plasma Display Panel (AC 플라즈마 디스플레이패널의 방전개시전압에 모델과 실험의 비교에 관한 연구)

  • 박장식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1039-1044
    • /
    • 2000
  • Breakdown voltage model and expertiments are compared for discharge cells of AC plasma display panel. In the model, discharge paths are assumed to be initial electric field lines and the one-dimensional continuity equation is applied to the charged particle transport at each field line. The comparisons are performed in the wide range of gas pressure (50-600torr), Xe partial pressure over total pressure (1-6%), sustain electrode gap(100-1000$\mu\textrm{m}$), wall height(130, 300$\mu\textrm{m}$), and voltage pulse width(2-6${\mu}$s). The presented breakdown voltage model well agree with experiments in the above wide range. The increase of breakdown voltage with the decrease of the width(L) of protruding electrode is also described by the model.

  • PDF

Study on the Address Discharge Characteristics for the Analysis of the Unstable Discharge in AC PDP (AC PDP의 오방전 원인 분석을 위한 어드fp스 방전 특성에 관한 연구)

  • Kim, Dong-Hun;Jeon, Won-Jae;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.214-215
    • /
    • 2007
  • Unstable sustain discharges can occur at the bottom cells of the panel at high temperature. To solve this phenomenon, the wall charge variation during an address period was investigated. A test panel of 7.5 inch XGA level was used and one green cell was measured. In order to realize operating condition equal to that of the bottom cells of 50 inch panel, the addressing stress pulses are applied. It seems that the resultant wall charge loss during address period increased with increase of temperature as well as the addressing stress pulse voltage. Therefore it results in unstable discharge during sustain period.

  • PDF

A Study on the Effect of Space Charge on the Display Discharge of Plasma Display Panel (플라즈마 디스플레이 패널의 표시방전에 미치는 공간전하의 영향에 관한 연구)

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.14-20
    • /
    • 2006
  • The discharge characteristics for the reset period of sustain pulses of display discharge in address overlapped display driving methode is studied. It has been understood that the display discharge is strongly influenced of not only the wall charge but also the space charge from the experiment result. The first display discharge which comes out exactly after the rest periods strongly depends on the width of the reset period and as for the second display discharge, the dependancy of it is very low. Even if the first display discharge is a little insufficient if the wall charge is accumulated enough, the second display discharge can be stably induced. However, considering the influence of the space charge, it is preferable within the width of $30[{\mu}s}]$ of the reset period. When the rest period is up to $30[{\mu}s}]$, the uniform voltage operation margin of the display discharge of about 12[V] was obtained.

Influence of Sustain Pulse-width on Electrical Characteristics and Luminous Efficiency in Surface Discharge of AC-PDP

  • Jeong, Yong-Whan;Jeoung, Jin-Man;Choi, Eun-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.276-279
    • /
    • 2005
  • Influences of sustain pulse-width on electrical characteristics and luminous efficiency are experimentally investigated for surface discharge of AC-PDP. A square pulse with variable duty ratio and fixed rising time of 300 ns has been used in the experiment. It is found that the memory coefficient is significantly increased at the critical pulse-width. And the wall charges and wall voltages as well as capacitances are experimentally measured by Q- V analysis method along with the voltage margin relation, in terms of the sustain pulse-width in the range of $1{\mu}s$ to $5{\mu}s$ under driving frequency of 10 kHz to 180 kHz. And the luminous efficiency is also experimentally investigated in above range of sustain pulse-width with driving frequency of 10 kHz to 180 kHz. It is noted that the luminous efficiency for 10 kHz and 180 kHz are 1.29 1m/W and 0.68 1m/W respectively, since the power consumption for 10 kHz is much less than that for 180 kHz. It has been concluded that the optimal sustain pulse-width is in the range of $2.5 {\~}4.5{\mu}s$ under driving frequency range of 10 kHz and 60 kHz, and in the range of $1.5 {\~} 2.5{\mu}s$ under driving frequency range of 120 kHz and 180 kHz based on observation of memory coefficient, and wall voltage as well as luminous efficiency.

Experimental Observation of Temporal Dark Image Sticking in AC PDP with Face-to-Face Sustain Electrode Structure

  • Kim, Jae-Hyun;Park, Choon-Sang;Kim, Bo-Sung;Park, Ki-Hyung;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.617-620
    • /
    • 2007
  • The temporal dark image sticking phenomena for both the face-to-face and coplanar sustain electrode structures were compared. For both structures, the temporal dark image sticking phenomena were examined by measuring the difference in the IR emission, display luminance, perceived luminance, and temperature between the image sticking and the no image sticking cells. For the face-to-face structure, the 10-min sustain discharge causes a small increment of the panel temperature thanks to the ITO-less electrode structure, thereby resulting in mitigating the temporal dark image sticking phenomenon.

  • PDF

Dual Path Magnetic-Coupled AC-PDP Sustain Driver with Low Switching Loss

  • Lee Jun-Young
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.205-213
    • /
    • 2006
  • A cost-effective magnetic-coupled AC-PDP sustain driver with low switching loss is proposed. The transformer reduces current stress in the energy recovery switches which affects circuit cost and reliability. The turns-ratio can be used to adjust the sustain pulse slopes which affect gas discharge uniformity. Dividing the recovery paths prevents abrupt changes in the output capacitance and thereby switching losses of the recovery switches is reduced. In addition, the proposed circuit has a more simple structure because it does not use the recovery path diodes which also afford a large recovery current. By reducing the current stress and device count in the energy recovery circuit, the proposed driver may have decreased circuit cost and improved circuit reliability.

Luminance Characteristics of Sustain Discharge for the Plasma Display Panels (플라즈마 디스플레이 패널의 표시방전 휘도특성)

  • Lee, Young-Su;Lee, Joong-Hun;Lee, Jeong-Seop;Lee, Kyu-Seong;Ryeom, Jeong-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1932-1933
    • /
    • 2007
  • 본 연구에서는 sustain 펄스의 개수와 폭의 변화에 따른 sustain 방전의 휘도특성을 측정하였다. 실험을 위하여 PDP 구동실험장치에 사용하는 디지털 시스템과 고전압 펄스 driver 회로부를 개발하였다. 실험결과, 1TV-field 동안 인가되는 sustain 펄스의 개수가 증가할수록 휘도는 완만한 포화곡선을 나타내며 증가하였고 펄스의 폭이 좁아질수록 휘도가 증가하였다. 그리고 펄스폭에 대한 휘도의 증가 정도는 펄스의 개수가 증가할수록 커졌다.

  • PDF

Effect of Self-Erase Discharge on the Luminous Efficacy of Long Gap AC PDPs

  • Kim, Tae-Jun;Jung, Jae-Chul;Jung, Hae-Yoon;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.585-588
    • /
    • 2007
  • We studied the effect of self-erase discharge on the luminous efficacy of ac PDPs. We observed through discharge current analysis to confirm that the selferase discharge occurred mainly between sustain cathode and address electrode, which have an influence on the luminous efficacy. The amount and timing of the self-erase discharge was varied to observe its effect on the luminous efficacy. It has been found that the luminous efficacy could be improved by the self-erase discharge when it is adjusted to occur right before the main discharge in the small gap structure. In the long gap structure, on the contrary, the luminous efficacy could be increased when the self-erase discharge is suppressed. Also, various waveforms to control self-erase discharge are suggested and tested in the panel experiments.

  • PDF

Ionizing Characteristic of Glow Discharge by Controlled Air Flow Rate (공기유량에 따른 글로우 방전의 제전 특성)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.49-53
    • /
    • 2008
  • Glow discharge has lots of attractive properties, such as lower discharge sustaining voltage, no generation of ozone, and so on. And more, ionizer was developed recently using an atmospheric pressure glow discharge. On the other hand, ionizer needs a compressed or blown air to transport ion for charged objects. This air is very useful in explosive hazardous area to prevent the explosion of flammable gas and/or vapor by ignition sources, e.g. electrical spark. In this paper, we investigated the ionizing characteristic of atmospheric pressure glow discharge by controlled air flow rate from 5 liters to 60 liters a minute, and compared with decay time between the corona discharge and glow discharge as a function of some direction and distance from discharge ion source. We confirmed that an air flow rate needs 25 liters a minute to sustain the most suitable atmospheric pressure glow discharge and to increase an ionizing efficiency.