• Title/Summary/Keyword: suspended particle

Search Result 299, Processing Time 0.032 seconds

Simulation of Sediment Transport in a River System Using Particle Entrainment Simulator (페즈(PES)를 이용한 하천의 토사 이동 시뮬레이션)

  • Lee, Young-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.5-14
    • /
    • 2004
  • A feasibility of using Particle Entrainment Simulator (PES) to evaluate model variables describing sediment entrainment in a river system was investigated. PES in a laboratory was utilized to simulate the sediment resuspension phenomenon in the river and the subsequent relationship between shear rate and sediment entrainment was developed. The total suspended solids (TSS) data from PES was incorporated into statistical models in an effort to describe behaviors of net particle movement in the river. PES was found to be adequate for simulating particle entrainment phenomenon in a river system. Statistical analysis was used to assess propriety of PES data for predictive purposes. The results showed good relationships between PES results and system variables, such as average stream velocity and net particle movement.

Suspended Particulate Concentration at the Drilling Site of Underground Coal Mines in Taebaek Area (태백지역 석탄광업 굴진부서의 부유분진 농도)

  • 윤영노;김영식;이영신
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.32-38
    • /
    • 1991
  • Airborne suspended particulate concentration in drilling sites of underground coal mines in Taebaek area was evaluated. And respirable coal dust exposure level was evaluated. Airborne suspended particulate mass include total suspended particle(TSP) and thoracic particle(TPM). TSP (by open-face filter holder) and TPM(by elutriator) concentration were determined by low volume air samplers. Personal air samplers were attached to the coal workers including drillers, coal cutters, and their assistants. Normality and log-normality of TSP, TPM, and respirable dust(RPM) concentration were tested by Kolmogorov-Smirnov one-sample test. Differences of means of TSP, TPM, and RPM concentration were tested by paired t-test. Relation between TSP, TPM, and RPM with pairs were tested by regression test and Pearson's correlation.

  • PDF

Separation Performance of a Low-pressure Hydrocyclone for Suspended Solids in a Recirculating Aquaculture System

  • Lee, Jin-Hwan
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.150-156
    • /
    • 2010
  • The separation performance of a low-pressure hydrocyclone (LPH) was evaluated for suspended-solids removal in a recirculating aquaculture system (RAS). The dimensions of the LPH were 335 mm cylinder diameter, 575 mm cylinder height, 60 mm overflow diameter, 50 mm underflow diameter, and $68^{\circ}$ cone angle. The inflow rate varied (400, 600, 800, and 1,000 mL $s^{-1}$) with 25%, 25%, 20%, and 10% of bypass ($R_f$), respectively. The maximum total separation efficiency (Et) and reduced separation efficiency (E't) for suspended solids from the effluent of the second settlement tank (before biofiltration) were 58.9% and 45.2%, respectively, at an inflow rate of 600 mL $s^{-1}$ and 25% of $R_f$. The maximum Et and E't for suspended solids from the water supply channel (after biofiltration) were 24.4% and 16%, respectively, at an inflow rate of 1,000 mL $s^{-1}$ and 10% of $R_f$. The maximum grade efficiency (Ei) was 51.6% for a 300 ${\mu}m$ particle size at an inflow rate of 600 mL $s^{-1}$ with 23% of $R_f$. The maximum reduced grade efficiency (E'i) was 37.6% for a 300 ${\mu}m$ particle size at an inflow rate of 1,000 mL $s^{-1}$ with 11% of $R_f$. The results indicate that the separation performance of the LPH for suspended solids removal was size selective and that maximum removal occurred at particle sizes ranging from 300 to 500 ${\mu}m$.

Settling and Filtering Process for the Treatment of Fine Suspended Solids and Soluble Heavy Metals in H Mine Drainage (H 광산배수 내 미세부유물질 및 용해성 중금속의 제거를 위한 침전 및 여과 공법에 관한 연구)

  • Oh, Minah;Kim, WonKi;Kim, DukMin;Lee, SangHoon;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.102-111
    • /
    • 2012
  • Fine suspended solids generated effluence from treatment process of mine drainage could destroy environment as the aesthetic landscapes, and depreciate water quality. Therefore, the purpose of this research is focused on process development applied the actual field for controlling fine suspended solids and heavy metals, and so lab-scale test was performed for inducement of basic data. The mine drainage used in this research was sampled in H mine located Jeongseon-gun, Gangwon-do. Concentration of suspended solid, arsenic, iron and manganese was exceeded the standard of contaminant limitation for the clean water, and particle size of suspended solid was less than 10 m as fine particle. Although hydraulic retention time of mine drainage for effective settling was required more than 6 hours, hydraulic retention time would be increased in winter season when the settling efficiency could be reduced because of viscosity decreasing. Moreover, installed inclination plate helped to increase settling efficiency of suspended solid about 48 %. Filtering media that was the most effective removal of suspended solids and heavy metal was decided granular activated carbon of 1~2 mm was the optimal size.

Evolution of suspended sediment patterns in the East China and Yellow Seas

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Gallegosi, Sonia
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • The evolution of intricate and striking patterns of suspended sediments (SS), which are created by certain physical dynamics in the East China and Yellow Seas, has been investigated using satellite ocean color imageries and vertical profiles of particle attenuation and backscattering coefficients. The structure of these patterns can reveal a great deal about the process underlying their formation. Sea surface temperature (SST) analyzed from the Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data were used to elucidate the physical factors responsible for the evolution of suspended sediment patterns in the East China Sea. The concomitant patterns of suspended sediments were tracked from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data. The detailed examination about these patterns gave birth to the definition of the evolution of suspended sediments (SS) into four stages: (1) Youth or Infant stage, (2) Younger stage, (3) Mature stage, and (4) Old stage. We describe about the three directional forces of the tidal currents, ocean warm currents and estuarine circulations that lead to occurrence of various stages of the evolution of suspended sediments that increase turbidity at high levels through out the water column of the inner and outer shelf areas during September to April. The occurrence of these four stages could be repeatedly observed. In contrast, vertical profiles of the particle attenuation ($c_{p}$) and backscattering ($b_{bp}$) coefficients displayed obvious patterns of the propagation of suspended sediment plume from the southwestern coastal sea that leads to eventual collision with the massive sediment plume originating from the Yangtze banks of the East China Sea.

Field Measurement of Suspended Material Distribution at the River Confluence (하천 합류부에서의 부유입자 분포에 대한 현장측정)

  • Kwak, Sunghyun;Lee, Kyungsu;Cho, Hanil;Seo, Yongjae;Lyu, Siwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.467-474
    • /
    • 2017
  • Each river confluence has the inherent hydraulic and mixing characteristics coming from its bathymetry and topography. It is necessary to make the measurement covering the spatial extent of studying area in order to catch these 2-dimensional intrinsic characteristics. This study focuses to investigate the hydraulic and mixing characteristics at the confluence of Nakdong and Geumho River, from field measurement of flow, water quality, and suspended particle distribution with ADCP (Riversurveyor M9), multi-parameter water quality sonde (YSI6600V2), and submersible system for in-situ observations of particle size distribution and volume concentration (LISST : Laser In-Situ Scattering & Transmissometry), respectively. From the results, it can be found that the field measurement of suspended particle and water quality distribution can be the useful approach to catch the hydraulic and mixing characteristics at a river confluence.

Magnetic force assisted settling of fine particles from turbid water

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.7-11
    • /
    • 2020
  • When rivers and lakes are contaminated with numerous contaminants, usually the contaminants are finally deposited on the sediments of the waterbody. Many clean up technologies have been developed for the contaminated sediments. Among several technologies dredging is one of the best methods because dredging removes all the contaminated sediments from the water and the contaminated sediments can be completely treated with physical and chemical methods. However the most worried phenomenon is suspension of fine particles during the dredging process. The suspended particle can release contaminants into water and resulted in spread of the contaminants and the increase of risk due to the resuspension of the precipitated contaminants such as heavy metals and toxic organic compounds. Therefore the success of the dredging process depends on the prevention of resuspension of fine particles. Advanced dredging processes employ pumping the sediment with water onto a ship and release the turbid water pumped with sediment into waterbody after collection of sediment solids. Before release of the turbid water into lake or river, just a few minutes allowed to precipitate the suspended particle due to the limited area on a dredging ship. However the fine particle cannot be removed by the gravitational settling over a few minutes. Environmental technology such as coagulation and precipitation could be applied for the settling of fine particles. However, the process needs coagulants and big settling tanks. For the quick settling of the fine particles suspended during dredging process magnetic separation has been tested in current study. Magnetic force increased the settling velocity and the increased settling process can reduce the volume of settling tank usually located in a ship for dredging. The magnetic assisted settling also decreased the heavy metal release through the turbid water by precipitating highly contaminated particles with magnetic force.

Time-series Changes in Particle Size Characteristics of Suspended Sediment at the Seungchon and the Juksan Weir in the Yeongsan River (영산강 부유하중의 시계열적 입도 특성 변화: 승촌보, 죽산보를 중심으로)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.1-20
    • /
    • 2019
  • In order to establish appropriate policy to control sediment-associated problems, it is necessary to identify the physical characteristics of the reservoir sediments in particulate form in the Yeongsan River. Two time-integrated suspended sediment samplers were installed at Seungchon and Juksan weir on the upper and middle Yeongsan River in July 2012. Reservoir sediment samples were obtained at monthly intervals until October 2014. During the monitoring period, a total of 38 sediment samples were obtained and analyzed. Seasonal trends of suspended sedimentation rates and grain size distributions were examined based on variations in precipitation and discharge fluctuations. Moreover, stream flow characteristics, which has a great influence on the physical characteristics of the river sediment, was analyzed using flow duration curve for the period 2003-2019 at Naju gauging station. Sedimentation rates during summer, when heavy rainfall was concentrated due to the monsoonal front and typhoon, were very high, indicating the positive relationship between sediment concentration and discharge. Particle size analysis of the collected sediment showed that coarse silt and very fine sand-sized sediment dominated most of the Seungchon weir sediment. On the other hand, medium silt-sized sediment dominated the downstream Juksan weir except for a few summer samples. These results implied that the physical characteristics of the suspended sediment are determined not only due to flow fluctuations, but also with regard to the antecedent rainfall conditions, hillslope-channel connectivity, and the supply of materials from various contributing regions. This information about flow characteristics and temporal variations in reservoir sediment can be used for safe management of the weir and discussing the issues on the dismantling of the weirs.

A Study on Dust Control Characteristics inside a Test Dome in the Port of Inchon (인천항 시험돔 내부의 먼지제어특성에 대한 연구)

  • Jeon, ki-Joon;D.Y. Ryu;Jung, Yong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E
    • /
    • pp.47-57
    • /
    • 2000
  • This study focuses on the investigation of the effects of windspeed and particle size on the dust control characteristics inside a test dome built in the Port of Inchon to reduce the fugitive dust originating from the handling of animal feed stuff in the open pile area. The flow field inside the test dome and the trajectories of the particles were calculated using a commercial CFD code, FLUENT, assuming that the animal feed stuff handling activity took place inside the test dome. It was found from the simulation results that high windspeed and small particle size give rise to the increase in both the escaped fraction and the suspended fraction of the particles emitted from the animal feed stuff handing activity. Here, high escaped fraction represents the high possibility of fugitive dust problem outside the test dome, whereas high suspended fraction means the high possibility of severe dust pollution inside the test dome. Ore simulation results clearly show that the existing test dome was not designed properly to meet the proposed goal, low escaped fraction and low suspended fraction. Hence, we suggest the need of an efficient ventilation system inside the dome to control the dust.

  • PDF

Removal of Suspended Solids Using a Flexible Fiber Filter in a Recirculating Aquaculture System (유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거)

  • Choi, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • The suitability of a flexible fiber filter for removing suspended solid (SS) in a recirculating aquaculture system was evaluated. This study focused on variation in the performance with a change in filtering time, influent water quality, and filtering mode duration. The particle distribution diagram of the filter effluent showed that the number of particles bigger than $5-8{\mu}m$ decreased dramatically, and the removal efficiency exceeded 80%. Although the removal efficiencies of SS and chemical oxygen demand (COD) were dependent on the quality of the influent, the SS and COD concentrations of the effluent were not affected by the influent concentrations. This was despite the deterioration if water quality after feeding in the rearing tank. The performance of the filter was not affected by the filtering mode duration, feeding conditions, or filtering time. The SS concentration and turbidity of the recirculating-type rearing tank were 30% and 50% lower, respectively, than of the a non-recirculating-type rearing tank under the same operating conditions. The flexible fiber filter was applicable to a recirculating aquaculture system that uses plenty of seawater, based on its low filtering resistance $(2kg_f/cm^2)$, high flux $(330m^3/m^2/hr)$, and high fine particle removal efficiency (80%, $5-8{\mu}m$).