• 제목/요약/키워드: survival signal

검색결과 220건 처리시간 0.035초

헬리코박터 파이로리의 병원성 단백질, CagA에 대한 분자 독성학적 측면에서의 고찰 (Overview on Molecular Toxicological Aspects of Helicobacter pylori Virulence Factor, Cytotoxin-associated Antigen A (CagA))

  • 김병주;정화진;황지나;강석하;오세진;서영록
    • Toxicological Research
    • /
    • 제20권3호
    • /
    • pp.179-185
    • /
    • 2004
  • Helicobacter pylori (H. pylori) infects more than half of the people in the world as a major microbe to cause most of gastric diseases. Recently, cytotoxin associated-antigen A (CagA) is believed as one of the most important virulence factors of H. pylori. Molecular toxicological pathway of CagA is necessary to investigate for understanding the pathological and toxicological aspects of H. pylori, since this virulence protein harasses intercellular processes of host cells to get profit for the survival of H. pylori. CagA is coded from cag pathogenicity island (cag PAI) and translocated into host cells by Type 4 secretion system (TFSS). Tyrosine phosphorylation of CagA targets Src homology 2-containing phosphotyrosine phosphatase (SHP-2) to form a CagA-SHP-2 complex. This complex depends on the similarity of sequence between EPIYA motif and Src homology 2 domain (SH2 domain) of CagA. The generation of growth factors is an essential role of CagA in protecting and healing gastric mucosa for the survival of H. pylori. On the other hand, the activation of IL-8 by CagA induces neutrophils generating inflammation and free radicals. Indeed, free radicals are well known carcinogen to induce DNA damage. In addition, the transduction of mitogen-activation signal by CagA is one of the interesting features to understand how to cause cancer. The relationship between cancer and inflammation with CagA was mainly discussed in this review.

Role of p38 MAPK in the Regulation of Apoptosis Signaling Induced by TNF-α in Differentiated PC12 Cells

  • Park, Jung-Gyu;Yuk, Youn-Jung;Rhim, Hye-When;Yi, Seh-Yoon;Yoo, Young-Sook
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.267-272
    • /
    • 2002
  • TNF-$\alpha$ elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-$\alpha$ induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-$\alpha$. TNF-$\alpha$ initiates various signal transduction pathways leading to the activation of the caspase family, NF-${\kappa}B$, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-$\alpha$ receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-$\alpha$. This implies that the induction of anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-$\alpha$. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-$\alpha$ in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-$\alpha$ slowly increased and lasted several hours in the PC12 cell and DRG neuron. This specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-$\alpha$ in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in resoonse to TNF-$\alpha$ in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.

Over-expression of JunB inhibits mitochondrial stress and cytotoxicity in human lymphoma cells exposed to chronic oxidative stress

  • Son, Young-Ok;Heo, Jung-Sun;Kim, Tae-Geum;Jeon, Young-Mi;Kim, Jong-Ghee;Lee, Jeong-Chae
    • BMB Reports
    • /
    • 제43권1호
    • /
    • pp.57-61
    • /
    • 2010
  • Activator protein-1 can induce either cell survival or death, which is controlled by opposing effects of different Jun members. It is generally accepted that c-Jun is pro-apoptotic, but that JunD is anti-apoptotic in stress-exposed cells. Additionally, although there are reports suggesting that JunB plays a protective role, its role in stress-induced apoptosis remains unclear. Here, we investigated the role of JunB in $H_2O_2$-induced cell death using cells that over-expressed the protein or were transfected with si-JunB. Inhibition of JunB expression accelerated $H_2O_2$-mediated loss of mitochondrial membrane potential (MMP) and cytotoxicity. Conversely, over-expression of JunB protein led to significant inhibition of the MMP loss and cell death. The increase in JunB expression also attenuated nuclear relocation of apoptosis-inducing factor and mitochondrial Bcl-2 reduction that occurred following $H_2O_2$ exposure. These results suggest that JunB can signal survival against oxidant-mediated cell death by suppressing mitochondrial stress.

Protein Kinase C-mediated Neuroprotective Action of (-)-epigallocatechin-3-gallate against $A{\beta}_{1-42}$-induced Apoptotic Cell Death in SH-SY5Y Neuroblastoma Cells

  • Jang, Su-Jeong;You, Kyoung-Wan;Kim, Song-Hee;Park, Sung-Jun;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권5호
    • /
    • pp.163-169
    • /
    • 2007
  • The neurotoxicity of amyloid $\beta(A\beta)$ is associated with an increased production of reactive oxygen species and apoptosis, and it has been implicated in the development of Alzheimer's disease. While(-)-epigallocatechin-3-gallate(EGCG) suppresses $A\beta$-induced apoptosis, the mechanisms underlying this process have yet to be completely clarified. This study was designed to investigate whether EGCG plays a neuroprotective role by activating cell survival system such as protein kinase C(PKC), extracellular-signal-related kinase(ERK), c-Jun N-terminal kinase(JNK), and anti-apoptotic and pro-apoptotic genes in SH-SY5Y human neuroblastoma cells. One ${\mu}M\;A{\beta}_{1-42}$ decreased cell viability, which was correlated with increased DNA fragmentation evidenced by DAPI staining. Pre-treatment of SH-SY5Y neuroblastoma cells with EGCG($1{\mu}M$) significantly attenuated $A{\beta}_{1-42}$-induced cytotoxicity. Potential cell signaling candidates involved in this neuroprotective effects were further examined. EGCG restored the reduced PKC, ERK, and JNK activities caused by $A{\beta}_{1-42}$ toxicity. In addition, gene expression analysis revealed that EGCG prevented both the $A{\beta}_{1-42}$-induced expression of a pro-apoptotic gene mRNA, Bad and Bax, and the decrease of an anti-apoptotic gene mRNA, Bcl-2 and Bcl-xl. These results suggest that the neuroprotective mechanism of EGCG against $A{\beta}_{1-42}$-induced apoptotic cell death includes stimulation of PKC, ERK, and JNK, and modulation of cell survival and death genes.

작전부대의 인원편성 최적화를 위한 워게임 전투실험 방법에 대한 연구 (A Study on Warfighting Experimentation for Organizing Operational Troops)

  • 이용빈;염봉진
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.423-431
    • /
    • 2011
  • Warfighting experimentation is an important process for identifying requirements against changing military environment and for verifying proposed measures for reforming military service. The wargame simulation experiment is regarded as one of the most effective means to warfighting experimentation, and its importance is increasing than ever. On the other hand, the results of wargame experiments could be unreliable due to the uncertainty involved in the experimental procedure. To improve the reliability of the experimental results, systematic experimental procedures and analysis methods must be employed, and the design and analysis of experiments technique can be used effectively for this purpose. In this paper, AWAM, a wargame simulator, is used to optimize the organization of operational troops. The simulation model describes a warfighting situation in which the 'survival rate of our force' and the 'survival rate of the enemy force' are considered as responses, 'the numbers of weapons in the squad' as control factors, and 'the uncontrollable variables of the battlefield' as noise factors. In addition, for the purpose of effective experimentation, the product array approach in which the inner and outer orthogonal arrays are crossed is adopted. Then, the signal-to-noise-ratio for each response and the desirabilities for the means and standard deviations of responses are calculated and used to determine a compromise optimal solution. The experimental procedures and analysis methods developed in this paper can provide guidelines for designing and analyzing wargame simulation experiments for similar warfighting situations.

G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells

  • Cho, Eunah;Kwon, Yeo-Jung;Ye, Dong-Jin;Baek, Hyoung-Seok;Kwon, Tae-Uk;Choi, Hyung-Kyoon;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.591-602
    • /
    • 2019
  • Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrin-regulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased ${\beta}$-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.

Prognostic Value of Dynamic Contrast-Enhanced MRI-Derived Pharmacokinetic Variables in Glioblastoma Patients: Analysis of Contrast-Enhancing Lesions and Non-Enhancing T2 High-Signal Intensity Lesions

  • Yeonah Kang;Eun Kyoung Hong;Jung Hyo Rhim;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-Hoon Kim;Chul-Ho Sohn;Sun-Won Park;Seung Hong Choi
    • Korean Journal of Radiology
    • /
    • 제21권6호
    • /
    • pp.707-716
    • /
    • 2020
  • Objective: To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients. Materials and Methods: Sixty-four GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. We analyzed the pharmacokinetic variables of the volume transfer constant (Ktrans) and volume fraction of extravascular extracellular space within the CEL and NE-T2HSIL of the entire tumor. Univariate and multivariate Cox regression analyses were performed using preoperative clinical characteristics, pharmacokinetic variables of DCE MR imaging, and postoperative molecular biomarkers to predict PFS. Results: The increased mean Ktrans of the CEL, increased 95th percentile Ktrans of the CELs, and absence of methylated O6-methylguanine-DNA methyltransferase promoter were relevant adverse variables for PFS in the univariate analysis (p = 0.041, p = 0.032, and p = 0.083, respectively). The Kaplan-Meier survival curves demonstrated that PFS was significantly shorter in patients with a mean Ktrans of the CEL > 0.068 and 95th percentile Ktrans of the CEL > 0.223 (log-rank p = 0.038 and p = 0.041, respectively). However, only mean Ktrans of the CEL was significantly associated with PFS (p = 0.024; hazard ratio, 553.08; 95% confidence interval, 2.27-134756.74) in the multivariate Cox proportional hazard analysis. None of the pharmacokinetic variables from NE-T2HSILs were significantly related to PFS. Conclusion: Among the pharmacokinetic variables extracted from CELs and NE-T2HSILs on preoperative DCE MR imaging, the mean Ktrans of CELs exhibits potential as a useful imaging predictor of PFS in GBM patients.

비소세포 폐암에서 EGFR의 발현률과 생존률에 미치는 영향 (Expression of EGFR in Non-small Cell Lung Cancer and its Effects on Survival)

  • 김학렬;정은택
    • Tuberculosis and Respiratory Diseases
    • /
    • 제44권6호
    • /
    • pp.1285-1295
    • /
    • 1997
  • 연구배경 : 종양형성다단계 과정중의 하나인 EGFR(epidermal growth factor receptor)은 170KDa의 당단백질로서 세포막의 안팎에 걸친 수용체로서 EGF, TGF alph 의 자극에 의해서 신호전달체계의 시작을 담당한다. EGFR은 정상세포에도 존재가능하나 종양에서는 발현이 증가되어 있으며, EGFR의 발현이 높을수록 종양의 예후가 불량하리라 예측된다. 이에 저자들은 비소세포 폐암에서 EGFR의 발현을 확인하고 EGFR의 임상적 의의 특히 생존률과의 관계를 검색 하였다. 방 법 : 원발성 비소세포 폐암으로 확진받고, 외과적 절제술후 paraffin에 보관된 57례의 병리조직에서 면역 조직화학법으로 EGFR의 발현을 확인하고, EGFR과 암세포형, TNM 병기, 세포분화도, 유식세포 분석법에 의한 S 및 $G_1$ 주기비율 그리고 생존 기간과의 관계를 분석하였다. 결 과 : 1) 57례중 남녀비는 43 : 14였고, 중간 연령은 62세였다. EGFR과 생존기간과의 경향을 파악하기 위해, 종양세포중 EGFR 양성 세포가 20% 이상인 경우만을 발현군으로 하였을 때 56%에서 발현되었다. 2) EGFR의 발현은 병리조직형에 따른 차이는 없었고, TNM병기 그리고 세포의 분화도에 따른 차이도 없었다. 3) EGFR 발현군과 비발현군에서의 S-주기비율은 22.3(${\pm}10.5$)%, 18.0(${\pm}10.9$)% 였고, $G_1$-주기비율은 68.4(${\pm}11.6$)%, 71.1(${\pm}12.8$)%로서 모두 양군간의 유의한 차이는 없었다. 4) EGFR 발현군과 비발현군에서의 1년 생존률은 66%, 96%, 2년 생존률은 53%, 84%, 3년 생존률은 38%, 66%였고 중간 생존기간은 26개월, 53개월로서 유의한 차이가 있었다. 결 론 : 비소세포 폐암에서 EGFR은 56%에서 발현되었으며, 조직병리형, TNM 병기, 세포분화도에 따른 발현의 차이는 없었다. 발현군과 비발현군에서의 S 및 $G_1$ 주기비율은 차이가 없었다. EGFR 발현군과 비발현군의 2년 생존률은 53%, 84%였으며, 중간 생존기간은 26개월, 53개월이었다 (p<0.05). 즉 결과적으로 EGFR 발현이 높을수록 생존기간은 불량하여 예후추정인자로서의 이용이 가능하리라 판단된다.

  • PDF

Vitrification, in vitro fertilization, and development of Atg7 deficient mouse oocytes

  • Bang, Soyoung;Lee, Geun-Kyung;Shin, Hyejin;Suh, Chang Suk;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제43권1호
    • /
    • pp.9-14
    • /
    • 2016
  • Objective: Autophagy contributes to the clearance and recycling of macromolecules and organelles in response to stress. We previously reported that vitrified mouse oocytes show acute increases in autophagy during warming. Herein, we investigate the potential role of Atg7 in oocyte vitrification by using an oocyte-specific deletion model of the Atg7 gene, a crucial upstream gene in the autophagic pathway. Methods: Oocyte-specific Atg7 deficient mice were generated by crossing Atg7 floxed mice and Zp3-Cre transgenic mice. The oocytes were vitrified-warmed and then subjected to in vitro fertilization and development. The rates of survival, fertilization, and development were assessed in the Atg7 deficient oocytes in comparison with the wildtype oocytes. Light chain 3 (LC3) immunofluorescence staining was performed to determine whether this method effectively evaluates the autophagy status of oocytes. Results: The survival rate of vitrified-warmed $Atg7^{f/f}$;Zp3-Cre ($Atg7^{d/d}$) metaphase II (MII) oocytes was not significantly different from that of the wildtype ($Atg7^{f/f}$) oocytes. Fertilization and development in the $Atg7^{d/d}$ oocytes were significantly lower than the $Atg7^{f/f}$ oocytes, comparable to the $Atg5^{d/d}$ oocytes previously described. Notably, the developmental rate improved slightly in vitrified-warmed $Atg7^{d/d}$ MII oocytes when compared to fresh $Atg7^{d/d}$ oocytes. LC3 immunofluorescence staining showed that this method can be reliably used to assess autophagic activation in oocytes. Conclusion: We confirmed that the LC3-positive signal is nearly absent in $Atg7^{d/d}$ oocytes. While autophagy is induced during the warming process after vitrification of MII oocytes, the Atg7 gene is not essential for survival of vitrified-warmed oocytes. Thus, induction of autophagy during warming of vitrified MII oocytes seems to be a natural response to manage cold or other cellular stresses.

Ulmus Macrocarpa 열수 추출물에 의한 비장세포 수명 연장 (Ulmus Macrocarpa Water Extract Prolongs Splenocyte Life Span)

  • 강경화;현숙경;황혜진;김병우;김철민;정경태;이종환
    • 생명과학회지
    • /
    • 제25권10호
    • /
    • pp.1176-1183
    • /
    • 2015
  • Ulmus macrocarpa 자양강장 및 생리활성 물질로 이용되어 왔다. U, macrocarpa 열수 추출물(UMWE)이 일반적인 세포배양 조건에서 비장세포 수명연장에 미치는 효과에 대한 연구를 진행하였다. 100 μg/ml UMWE를 비장세포에 처리하여 실험을 진행하였다. 살아있는 세포확인은 Hoechst 33342 염색법과 세포생존관련 인자의 변화는 Western blot으로 확인하였다. 사이토카인 변화는 ELISA로 검증하였다. UMWE는 비장세포에 대하여 향상된 세포 생존력을 보였다. UMWE를 48시간과 96시간째 처리된 비장세포의 PI3K 및 ERK1/2의 인산화를 증가시켰다. 더욱이, 48시간과 96시간때에 Bcl-2의 발현량도 증가하였다. 반면, UMWE는 48시간과 96시간에 caspase-3의 활성이 줄어들었다. ICAD 단백질은 48시간에 증가하였다. UMWE는 조혈 및 세포생존력에 영향을 미치는 IL-2 cytokine량은 줄었지만 반면, IL-4 hematopoietin cytokine의 양은 증가하였다. UMWE는 48시간과 96시간에 증가된 IFN-γ level을 나타내었고 IL-12의 경우는 증가패턴을 보이는 효과를 발휘하였다. 이러한 결과는 UMWE가 다양한 신호전달 및 사이토카인 조절을 통해 비장세포 수명연장을 할 수 있다는 것으로 사료된다.