• Title/Summary/Keyword: surfactant-stable

Search Result 141, Processing Time 0.028 seconds

Isolation, Cloning and Co-Expression of Lipase and Foldase Genes of Burkholderia territorii GP3 from Mount Papandayan Soil

  • Putra, Ludwinardo;Natadiputri, Griselda Herman;Meryandini, Anja;Suwanto, Antonius
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.944-951
    • /
    • 2019
  • Lipases are industrial enzymes that catalyze both triglyceride hydrolysis and ester synthesis. The overexpression of lipase genes is considered one of the best approaches to increase the enzymatic production for industrial applications. Subfamily I.2. lipases require a chaperone or foldase in order to become a fully-activated enzyme. The goal of this research was to isolate, clone, and co-express genes that encode lipase and foldase from Burkholderia territorii GP3, a lipolytic bacterial isolate obtained from Mount Papandayan soil via growth on Soil Extract Rhodamine Agar. Genes that encode for lipase (lipBT) and foldase (lifBT) were successfully cloned from this isolate and co-expressed in the E. coli BL21 background. The highest expression was shown in E. coli BL21 (DE3) pLysS, using pET15b expression vector. LipBT was particulary unique as it showed highest activity with optimum temperature of $80^{\circ}C$ at pH 11.0. The optimum substrate for enzyme activity was $C_{10}$, which is highly stable in methanol solvent. The enzyme was strongly activated by $Ca^{2+}$, $Mg^{2+}$, and strongly inhibited by $Fe^{2+}$ and $Zn^{2+}$. In addition, the enzyme was stable and compatible in non-ionic surfactant, and was strongly incompatible in ionic surfactant.

Fluorescence and Laser Light Scattering Studies of Modified Poly(ethylene-co-methylacrylate0 Ionomers on the Formation of Stable Colloidal Nanoparticles in Aqueous Solution

  • 여상인;우규환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1054-1059
    • /
    • 1998
  • Fluorescence and dynamic light scattering measurements were applied to the study of formation and structure of aggregated colloidal particles in modified poly(ethylene-co-methylacrylate) ionomers in aqueous solution. Both 8-anillino-l-naphthalene-sulfonic acid (ANS) and pyrene were used as fluorescence probe to obtain the information on the structure of particle surface and inside, respectively. Three different ionomers used in this study started to aggregate at very dilute concentration, 3-8 x 10-6 g/mL. In this study, we demonstrate that the polyethylene ionomers can form stable nanoparticles. The hydrophobic core made of the polyethylene backbone chains is stabilized by the ionic groups on the particle surface. Such a formed stable nanoparticles have a relatively narrow size distribution with an average radius in the range of 27-48 nm, depending on the kind of ionic groups. Once the stable particles are formed, the particle size distributions were nearly constant. This study shows another way to prepare surfactant-free polyethylene nanoparticles.

Evaluation of Glyceryl Monooleate(GMO) W/O Emulsion Stability by using Turbiscan®LAB (Turbiscan®을 이용한 Glyceryl Monooleate(GMO) 함유 W/O 유제의 안정성 평가)

  • Cho, Kyung-Jin;Cho, Won-Kyung;Lee, Jeon-Pyung;Kim, Min-Soo;Kim, Jeong-Soo;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The main object of this study was to prepare of w/o emulsion including glyceryl monooleate(GMO) and to evaluate its stability by using the recently developed $Turbiscan^{(R)}LAB$. GMO is the polar oily surfactant with the low HLB value, and it forms the gel phase of cubic structures after dissolves in aqueous media. Phosphate buffer solution (PBS) of pH 7.4 was prepared as the water phase and Marcol 52(mineral oil) was used as the oil phase in this study. GMO was used as the surfactant of W/O emulsion. W/O emulsion using GMO alone as a surfactant was very unstable. But the emulsion using both GMO and poloxamer 407 was more stable. The stability of W/O emulsions was evaluated after centrifuging the emulsions. But it was difficult with naked eye because an opaque and concentrated system like W/O emulsion was very turbid. So $Turbiscan^{(R)}LAB$ was used to detect the destabilization phenomena in non-diluted emulsion. As a result, the W/O emulsion using the proper amounts of GMO and poloxamer 407 was more stable among them using GMO of various amounts. But it seems that the other element for the stability of W/O emulsion including GMO was required. Furthermore, the $Turbiscan^{(R)}LAB$ was a very efficient analyzer for evaluating the physical stability of emulsion.

Advanced Formulation and Pharmacological Activity of Hydrogel of the Titrated Extract of C. Asiatica

  • Hong Soon-Sun;Kim Jong-Ho;Li Hong;Shim Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.502-508
    • /
    • 2005
  • Titrated extract of Centella asiatica (TECA) contains three principal ingredients, asiaticoside (AS), asiatic acid (AA), and madecassic acid (MA). These components are known to be clinically effective on systemic scleroderma, abnormal scar formation, and keloids. However, one problem associated with administration of TECA is its low solubility in aqueous as well as oil medium. In this study, various nonionic surfactants and bile salts as anionic surfactant were tested and screened for solubilizing TECA with a view to developing topical hydrogel type of ointment which is stable physicochemically, and has better pharmacological effects. When TECA was incorporated into various nonionic surfactant systems, labrasol had the most potent capacity for solubilizing TECA. In cases of bile salt systems, Na-deoxycholate (Na-DOC) had foremost solubilizing capacity, even more than labrasol. In differential scanning calorimetric study, the peaks of AA, MA, AS and Na-DOC disappeared at the coprecipitate of $1\%$ TECA and $1\%$ Na-DOC, suggesting the optimum condition of Na-DOC for solubilizing TECA. When the physicochemical stability of hydrogel containing this mixture was assessed, it was stable at room temperature for at least one month. Pharmacologically it significantly decreased the size of wound area at the $9^{th}$ day when applied to the wound area of rat dorsal skin. Taken together, solubility of TECA was dramatically improved by using non ionic and anionic surfactant systems, and Na-DOC was found to be the most effective solubilizer of TECA in formulating a TECA-containing hydrogel typed ointment. Moreover this gel was considered to be applicable to clinical use for wound healing effect.

A Study on the Cleanup Process of HOCs-Contaminated Soil by Ex-situ Soil Washing Technology (Ex-situ 토양세척기법에 의한 소수성 유기오염물질로 오염된 토양의 정화에 관한 연구)

  • Choi, Sang-Il;Ryoo, Doo-Hyun;Jang, Min
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.99-107
    • /
    • 1997
  • In this study, a series of batch-scale tests were conducted to optimize the design parameters for the application of soil washing techniques to the hydrophobic organic compounds(HOCs)-contaminated soil and to find the effective methods for the recovery of surfactants from washing effluent by using solvent. Several nonionic surfactants (polyoxyethylene oleyl ester) and sophorolipid were applied to the artificially contaminated soil (4,000 mg n-dodecane/kg dry soil). The effects of washing time, concentration of surfactant solution, dilution ratio, and temperature on washing efficiencies were examined. Hydrophile-liphophile balance (HLB) number was proven to be one of the important parameters for soil washing. The HLB numbers of OA-5 and sophorolipid are too low to form a stable soil-water emulsion. They showed very low washing efficiencies less than 10e1o. If HLB number is in the proper range to form a stable soil-water emulsion, surfactant having higher solubility for HOCs shows higher washing efficiency. OA-14 having higher HLB number than OA-9 formed more stable soil-water emulsion. But its washing efficiency was about 20% due to a lower molar solubility ratio (MSR) than OA-9. OA-9, which forms a stable soil-water emulsion and has comparatively high sotubility for HOCs, showed about 60% washing efficiency by itself. To recover anthracene effectively from OA-9 washing effluent by using benzene as an organic solvent, desirable temperature and pH were $30^{\circ}C$ and 2, respectively.

  • PDF

DEVELOPMENT AND PHYSICOCHEMICAL CHARACTERIZATION OF PHASEINVERTED W/O MICROEMULSION CONTANING CYCLOSPORIN A.

  • Ryuu, Sang-A;Kim, Chong-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.285-285
    • /
    • 1996
  • Cyclosporin A (CyA) is widely used in the inhibition of graft rejection in organ transplantation. However, the bioavailability of CyA after oral administration is very low due to its poor solubility and dispersability hi water. To improve the solubility of CyA, microemulsion systems were developed and its physicochemical characteristics were evaluated by phase studies, solubility and dispersability tests. Phase studies on the systems composed of ethyl oleate (EO), PPG-20 methyl glucose ether (GP-20), poloxamer 123 (PL) and water U) were carried out to make stable w/o emulsions. Besides, based on CyA solubility test in various compositions of surfactant systems, a reasonable surfactant composition (GP-20/PL=4/1) was selected to enhance its solubility.

  • PDF

Candelilla Wax Nanoemulsions Prepared by Phase Inversion Composition (PIC) Method

  • Kim, Eun-Hee;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.203-209
    • /
    • 2014
  • Candelilla wax-in-water nanoemulsions stabilized by Span 80/Tween 80 were prepared by the phase inversion composition (PIC) method. Stable nanoemulsions with droplet diameters below 50 nm could be formed when the hydrophilic-lipophilic balance (HLB) values were between 13.5 and 14.5, surfactant concentration was 5.0 wt%, and the surfactant-wax ratio was 1:1. Increased emulsification temperature and cooling rate were found to improve the emulsion properties. Process of PIC (adding aqueous phase to the wax phase) produced smaller droplet size nanoemulsion compared to the process of adding wax phase to the aqueous phase. The stability of these nanoemulsions was assessed by following the change in droplet diameters with time of storage at room temperature (${\sim}25^{\circ}C$). The size remained constant during 2 months storage time.

Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation

  • Mondal, Arijit;Mondal, Asish;Mukherjee, Debkumar
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.67-79
    • /
    • 2015
  • Air stable nanoparticles were prepared from cobalt sulphate using tetra butyl ammonium bromide as surfactant and sodium borohydride as reductant at room temperature. The cobalt nanocolloids in aqueous medium were found to be efficient catalysts for the degradation of toxic organic dyes. Our present study involves degradation of Methylene Blue and Rhodamine-B using cobalt nanoparticles and easy recovery of the catalyst from the system. The recovered nanoparticles could be recycled several times without loss of catalytic activity. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to degrade the organic dyes effectively but lose their catalytic activity after recovery. The cause of dye colour discharge by nanocolloids has been assigned based on our experimental findings.

Studies on the Development of Sustained Release Preparation (I) Preparation and Evaluation of CAP Microcapsules of Sodium Ascorbate (지속성 제제의 개발에 관한 연구 (I) 아스코르빈산 나트륨의 CAP 마이크로캅셀의 제조 및 평가)

  • Shin, Sang-Chul;Koh, Ik-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.4
    • /
    • pp.253-262
    • /
    • 1991
  • Microencapsulation of sodium ascorbate with cellulose acetate phthalate(CAP) by coacervation/ phase separation method were carried out. Various factors affecting microencapsulation, i.e., surfactant concentration. CAP concentration, stirring speed and treatment of spermaceti as a sealing agent were studied. Dissolution rate. particle size distribution, surface feature and stability test were investigated. CAP microcapsules prepared using 0.5% span 80 as a surfactant showed smooth and round surfaces. The release of sodium ascorbate was retarded by microencapsulation with CAP and by sealant treatment with spermaceti. When triturated with sodium bicarbonate, CAP microcapsules were more stable than unencapsulated sodium ascorbate under various RH conditions at $37^{\circ}C$.

  • PDF

Orthokinetic Stability of $\beta$-Lactoglubulin-Stabilized Emulsions : Effects of Protein Heat Treatment and Surfactant Addition

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • Effects of protein heat treatment and surfactant additionoo the orthokindetic stability of $\beta$-lactoglobulin-stabilized emulsions have been investigated under turbulent flow conditions. In studies on protein-stabilized emulsions, samples which had been subjected to heat treatment(i.e. the protein solution orthe emulsion) have been found to be more prone to orthokinetic coalescene than the untreated ones. The emulsions stabilized with protein heated above the denaturation temperature(i.e. 7$0^{\circ}C$) showed the bigger initial average droplet size, which resulted in an increased orthokinetic coalescenece rate. The storage of the protein-stabilized emulsion at high temperature prior to the shearing experiment also made the emulsion less stable in the shear field. Interestingly. the addition of DATEM has been found to produce a substantial increase in orthokinetic stability of the heat-denatured protein-stabilized emulsion system, although Tween 20 is the opposite case.

  • PDF