• Title/Summary/Keyword: surfactant solutions

Search Result 215, Processing Time 0.023 seconds

Carrageenan as a Rheology Agent for Mild Cleansing Applications.

  • Lynch, Gerard
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.369-369
    • /
    • 2003
  • Viscarin is a tradename given to viscosifying carrageenans manufactured by FMC BioPolymer. The suitability of Vis car ins as rheology agents in mild cleansing applications has been investigated. Rheological properties, foam volume and clarity were measured to determine the impact of including 1 % Viscarin on 10% solutions of the following surfactants: acylglutamate, cocoamidopropyl betaine, PEG-80 laurate, sodium lauryl sulphate and sodium lauryol sarcosinate. Viscosity, pseudoplasticity and thixotropy of Viscarin/surfactant solutions varied with surfactant type. In all cases, the addition of Viscarin substantially increased viscosity. For example, at a shear rate of 1 sol, all surfactant solutions had viscosities <0.1 Pa s while viscosities of Viscarin/surfactant solutions ranged from 10 to 60 Pa s. By comparison, a solution of 1 % Viscarin had a viscosity of 0.3 Pa s. Clarity of surfactant solutions decreased in all cases on the addition of Viscarin. However, it was found that by including a mild solubilizing surfactant, such as PEG 40 hydrogenated castor oil, crystal clarity could be maintained in Viscarin/surfactant solutions. Viscarin increased the foam volume of sodium lauryolsarcosinate solutions from 10 ml to 220 ml and had no impact on the foam volume of the other surfactants tested. These results were used to formulate a clear, ultra-mild foaming cleansing gel based on sodium lauryol sarcosinate and Viscarin without the need for a secondary, foam-boasting surfactant. A mild shampoo was also formulated. Both products have excellent skin-feel and are capable of suspending bubbles and solid inclusions.

  • PDF

Study on the Performance Characteristics of Centrifugal Pump with Drag-reducing Surfactant Additives

  • Wang, Lu;Li, Feng-Chen;Dong, Yong;Cai, Wei-Hua;Su, Wen-Tao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.223-228
    • /
    • 2011
  • The performance characteristics of centrifugal pump were measured experimentally when running with tap water and drag-reducing surfactant (Octadecyl dimethyl amine oxide (OB-8)) solutions. Tests have been performed on five cases of surfactant solutions with different concentrations (0ppm (tap water), 200ppm, 500ppm, 900ppm and 1500ppm) and four different rotating speeds of pump (1500rpm, 2000rpm, 2500rpm and 2900rpm). Compared with tap water case, the experimental results show that the total pump heads for surfactant solution cases are higher. And the pump efficiency with surfactant solutions also increases, but the shaft power for surfactant solutions cases decreases compared to t hat for tap water. There exists an optimal temperature for surfactant solutions, which maximizes the pump efficiency.

The Surface Tension Components of Mixed Surfactant Solutions (혼합계면활성제 용액의 표면장력 성분)

  • 정혜원;윤혜신
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.690-696
    • /
    • 1996
  • In order to study the affect of surfactants on the soil removal, the dispersion and polar force components of surface tension for surfactant solutions (such as LAS, AS, AOS, AES, AE) were calculated using extended Fowkes equation. The contact angles on paraffin and surface tension of surfactant solutions were measured. Cmcs of LAS, AS, AES and AE were below the concentration of 0.05%, but the cmc of AOS was between 0.05% and 0.1%. The surface tension of AE was lowest but the dispersion force component was greastest. Total surface tension of every mixed anionic surfactant was lower than that of single surfactants, and the dispersion force components were almost decreased. The addition of sodium carbonate to the sufactant solutions decreased the surface tension, and the surface tensions of surfactant solutions were lowered after washing.

  • PDF

Synergism effect of mixed surfactant solutions in remediation of soil contaminated with PCE

  • Lee, Dal-Heui
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.47-51
    • /
    • 2004
  • The purpose of this research was to evaluate the effect of mixed surfactant solution for removal of perchloroethylene (PCE) in soil. Ten different surfactant solutions were used in column studies. Mixed surfactant solutions (anionic and nonionic) were most effectively worked in the sandy soil for removal of PCE as a result of synergism between the two types of surfactants. The effectiveness of the mixture of surfactants was 35 % greater than that for the anionic or nonionic surfactant alone. The results indicate that mixed surfactant solution leaching is a promising candidate for the remediation of PCE contaminated sandy soil.

  • PDF

Kinetic Studies on the Ligand Substitution Reactions of Cyanocobalt(II) Complexes in Micellar Solutions (미셀용액에서 Cyanocobalt(II) 착물의 리간드치환 반응에 대한 속도론적 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.370-378
    • /
    • 2009
  • Kinetic studies on the ligand substitution reactions of cyanocomplexes were performed in several micellar solutions. It showed the observed rate constants was found to be independent of the entering ligand concentration at high concentration of cyanopyridine and pyrazinecarboxylate. We could see also that in nonionic and anionic micellar solutions no influence of changes in the surfactant concentration on the observed rate constants was found. Taking into account the hydrophilic nature of the cobalt complex, the cobalt complex molecule was expected to be located in the aqueous phase of the micellar systems, where the reaction would take place. In cationic micellar solutions, a small increase in the observed rate constant was found when the cationic surfactant concentration increased. After reaching a maximum, the rate constant decreased on increasing surfactant concentration and subsequently it reached a plateau, where the observed rate constant was independent of changes in the surfactant concentration.

Effect on Nonionic Surfactant Solutions on Wetting and Absorbancy of Cotton Fabrics (비이온계 계면활성제 수용액이 면직물의 습윤특성에 미치는 영향)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.8
    • /
    • pp.1444-1452
    • /
    • 2001
  • Textile materials are frequently in contact with surfactant solutions during their manufacturing or finishing processes as well as cleaning processes in use. Liquid wetting, wicking and absorbency of textile materials, and the liquid properties, surface characteristics and pore geometry of textile materials, and the liquie-solid interactions, In this paper, 10 different nonionic surfactants, including Span 20, Twen 20, 40, 60, 80, 21, 61, 81, 65, 85, were used. The surfactants were characterized by their hydrophile-lipophile-balance (HLB) values, structures, and surface tensions. The 0.1g/dL and 1.0g/dL surfactant solutions, which were both above critical micelle concentration (CMC), were used to see the concentration effects on the wetting and absorbency of cotton fabrics. The wetting behavior and liquid retention properties of hydrophobic cotton fabrics with different nonionic surfactant solutions are reported. The contact angles are greatly decreased and the water retention values are greatly increased by adding most of the surfactants studied into the system. The extents of this effects are influenced by the characteristics of surfactants and its solutions. Hydrophilic surfactants which have low number of carbon atoms or unsaturated hydrophobe structures are more effective in improving the wetting and absorbancy of hydrophobic cotton fabrics. The water retention of hydrophobic cotton fabrics has positive relations with $cos{\theta}$, adhesion tension and work of adhesion. The 1.0g/dL surfactant solutions show similar, but slightly improved wetting and absorbency characteristics of hydrophobic cotton fabrics compared to the 0.1g/dL surfactant solutions.

  • PDF

Rheological behavior and wall slip of dilute and semidilute CPyCl/NaSal surfactant solutions

  • Kibum Sung;Han, Min-Soo;Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • In this research, experimental studies were performed to examine the rheological behavior of equimolar solutions of cetylpyridinium chloride (CPyCl) and sodium salicylate (NaSal) solutions with concentration. The surfactant solutions were prepared by dissolving 2 mM/2 mM - 80 mM/80 mM of surfactant/counterion in double-distilled water. It has been observed that the zero shear viscosity shows abrupt changes at two critical values of C^*$ and C^{**}$. These changes are caused by the switching of relaxation mechanism with concentration of CPyCl/NaSal solutions at those concentrations. The wall slip velocities of dilute and semidilute CPyCl/NaSal solutions show a dramatic increase with shear rate where the shear viscosity exhibits shear thickening behavior for dilute solutions and shear thinning behavior for semi-dilute solutions, respectively. Considering that the dramatic increase in wall slip velocity should be related to the formation of shear-induced structure (SIS) in the surfactant solution, the shear thickening behavior of semi-dilute solutions is caused by elastic instability unlike the case of dilute solutions.

Precipitation, Resolubilization and Luminescent Properties of Tris (2,2$^\prime$-diimine)Ruthenium(II) Complexes in Premicellar Anionic Surfactant Solutions

  • Park, Joon-Woo;Kim, Sung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.317-322
    • /
    • 1988
  • Premicellar precipitation, resolubilization and luminescing behaviors of $RuL_3^{2+}$ (L = bpy, phen, $Me_2bpy$) in aqueous alkylsulfate and sulfonate solutions were studied. Addition of the anionic surfactants to $RuL_3\;^{2+}$ solutions caused initial precipitation which was redissolved by further addition of the surfactants. The apparent solubility products $K_{sp}$'s of the precipitates were evaluated assuming 1:2 salt formation. The values were smaller as the ligand is more hydrophobic and the length of hydrocarbon chain of the surfactant is longer. The $K_{sp}$ values for L = bpy were constant over wide surfactant concentration range. However, those for L = $Me_2bpy$ and also for phen, but to less extent, increased with the surfactant concentration. The resolubilization of 1:2 salts was followed by red-shift of emission band and extensive emission quenching above critical concentration of the surfactants. The critical concentration was lower for more hydrophobic surfactant. For L = $Me_2bpy$, the blue-shifted emission band with enhanced emission intensity was observed in intermediate surfactant concentration region. The high ionic strength of media prevented the precipitate formation, but facilitated the red-shift of the emission bands. The results support that the precipitate is dissolved by accretion of surfactant anions to the salts to form water-soluble surfactant-rich $RuL_3$-surfactant anionic species. These species appeared to aggregate cooperatively to produce large clusters which exhibited the red-shifted emission.

The Surface Activities of Surfactant Mixtures (혼합 개면활성제의 개면활성에 관한 연구)

  • 정혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.3
    • /
    • pp.348-354
    • /
    • 1994
  • The changes of surface activities in the aquaous solutions of mixed surfactants composed of linear sodium dodecylbenznesulfoate (LAS), polyoxyethylene nonyl phenylether (PE, EO=10) and polyethylene glycol monolauryl ether (LE, EO=25) have been studied. Addition of nonionic surfactants to LAS reduces the surface tension, especially at the lower concentration than cmc. The interfacial tension of olive oil/LAS was lower than the other surfactant solutions. The removal of triolein from cotton fabrics by nonionic surfactants and mixtures is higher than by LAS. The addition of NaCI to surfactant solutions even though reduces surface tension smaller but enthances oil removal more than that of $CaCl_2$.

  • PDF

Solubilizability, foliar wettability and phytotoxicity of nonionic surfactant-acetone aqueous solutions for the herbicide screening (제초제 스크리닝을 위한 계면활성제-아세톤 수용액의 용매성, 전착성 및 약해)

  • Yu, Ju-Hyun;Cho, Kwang-Yun
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.296-301
    • /
    • 1995
  • For studying the role of acetone and surfactant in solution, and selecting the best surfactant for spray solution in herbicide screening, the solubilizability of 6 nonionic surfactant-acetone aqueous solutions to 18 herbicide technicals, their foliar wettability and phytotoxicity to soybean and rice plant were tested and evaluated. The solubilizability of surfactant-acetone aqueous solutions to herbicide technicals was dependent on the acetone content of solutions, and was less affected by nonionic surfactant. Foliar wettability of the surfactant solutions was good to soybean, but only polyoxyethylene lauryl ether HLB 13.6(LE-13.6) solution showed good wettability to rice plant within the concentration range of no phytotoxicity. Tween 20(0.1%), LE-13.6(0.01%) and polyoxyethylene nonylphenyl ether HLB 16.0(0.01%) solutions didn't induce phytotoxicity to soybean, and most of the surfactant solutions didn't induce phytotoxicity to rice plant. There was no surfactant that showed superior emulsifiability to various herbicide technicals, good foliar wettability to plants, and no phytotoxicity, but LE-13.6 was better than others.

  • PDF