• 제목/요약/키워드: surfactant addition

검색결과 422건 처리시간 0.023초

계면활성제 첨가가 커튼 코팅용 도공액의 물성과 커튼 안정성에 미치는 영향 (Effect of surfactant addition on curtain coating color properties and curtain stability)

  • 오규덕;김채훈;윤혜정;이학래
    • 펄프종이기술
    • /
    • 제43권5호
    • /
    • pp.49-54
    • /
    • 2011
  • Curtain coating has been considered as the best coating technology because it is a coating technology that forms contour coating layer with better coverage. To increase the curtain stability surfactants are being used. In this study, the effect of a surfactant on the stability of curtain coating colors was examined by evaluating dynamic surface tension with a bubble surface tensiometer. Di-2-ethylhexyl sodium sulfosuccinate was used as a surfactant since it showed low dynamic surface tension at low surface age. And we evaluated the influence of surfactant on coating color properties including surface tension, viscosity and curtain stability. The surface tension of coating color was decreased when surfactant addition was increased up to 0.5 pph, but it was leveled off at 0.3 pph of surfactant addition. With the increase of surfactant addition rate, viscosity of coating color were increased. Micelles formed by surfactant contributed to the increase of the viscosity. Curtain stability was improved with the addition of surfactant until it reached up to 0.5 pph. Excessive addition of surfactant (> 0.5 pph) didn't improve curtain stability. This was attributed to Marangoni effect(self-healing) and decreasing of curtain thickness.

Electrophoretic Mobility to Monitor Protein-Surfacant Interactions

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • 제3권2호
    • /
    • pp.143-151
    • /
    • 1998
  • Protein -surfactant interactions have been investigate by measuring ζ-potential of $\beta$-lactoglobulin-coated emulsion droplets and $\beta$-lactoglobulin in solution in the rpesenceof surfactant, with particular emphasis on the effect of protein heat treatment(7$0^{\circ}C$, 30min). When ionic surfactant (SDS or DATEM) is added to the protein solution, the ζ-potential of the mixture is found to increase with increasing surfactant concentration, indicating surfactant binding to the protein molecules. For heat-denatured protein,it has been observed that the ζ-potential tends to be lower than that of the native protein. The effect of surfactant on emulsions is rather complicated .With SDS, small amounts of surfactant addition induce a sharp increase in zeta potential arising from the specific interaction of surfactant with protein. With further surfacant addition, there is a gradual reductio in the ζ-potential, presumably caused by the displacement of adsorped protein (and protein-surfactant complex) from the emulsion droplet surfac by the excess of SDS molecules. At even higher surfactant concentrations, the measured zeta potential appears to increase slightly, possibly due to the formation of a surfactant measured zeta potential appears to increase slightly, possibly due to the formation of surfactant micellar structure at the oil droplet surface. This behaviour contrastswith the results of the corresponding systems containing the anionic emulsifier DATEM, in which the ζ-potential of the system is found to increase continuously with R, particularly at very low surfactant concentration. Overall, such behaviour is consisten with a combination of complexation and competitive displacement between surfactant and protein occurring at the oil-water interface. In addition, it has also been found that above the CMC, there is a time-dependent increase in the negative ζ-potential of emulsion droplets in solutions of SDS, possibly due to the solublization of oil droplets into surfactant micelles in the aqueous bulk phase.

  • PDF

Tergitol 계열 비이온 계면활성제 시스템에서 첨가제가 원유의 황화합물 가용화에 미치는 영향에 관한 연구 (Effect of Additives on Solubilization of Sulfur Compounds in the Crude Oil by Tergitol Series Nonionic Surfactants)

  • 한지원;임종주
    • Korean Chemical Engineering Research
    • /
    • 제45권3호
    • /
    • pp.226-233
    • /
    • 2007
  • 본 연구에서는 Tergitol 계열 비이온 계면활성제 시스템에 이온 계면활성제와 보조 계면활성제를 각각 첨가한 경우에 있어서의 원유 중에 포함되어 있는 황화합물 가용화도에 관하여 살펴보았다. Sodium oleate, potassium oleate, CTAB와 DTAB 등의 이온 계면활성제 첨가는 비이온 계면활성제에 의한 황화합물 가용화도에 큰 영향을 미치지 않는 반면에 사슬 길이가 긴 알코올을 보조 계면활성제로 첨가한 경우에는 원유 중의 황화합물 가용화도가 증가하였다. 알코올의 첨가 효과는 계면활성제가 수용액 상으로부터 오일 상으로 이동하는 partitioning 현상으로 인하여 사용한 원유 양이 증가할수록 작아지며, 또한 사용한 알코올의 사슬 길이에 따른 가용화도 증가 차이도 작게 나타났다. 원유와 계면 활성제 수용액 사이의 계면장력은 온도가 증가할수록 감소하였고 소수성의 계면활성제일수록 감소의 폭이 증가하였다. 수용액의 pH 변화에 따라 황화합물의 가용화에는 큰 변화가 없었으며, 탈황 미생물 성장 영향 실험에서 계면활성제 혹은 보조계면활성제의 첨가는 탈황 미생물의 성장에 큰 영향을 끼치지 않음을 확인할 수 있었다.

Surfactant 를 처리한 고구마 전분의 물리 화학적 특성 (Physicochemical Characteristics of Surfactant Added Sweet Potato Starch)

  • 이신경;신말식
    • 한국식품조리과학회지
    • /
    • 제8권3호
    • /
    • pp.255-263
    • /
    • 1992
  • Pasting characteristics and amylose-surfactant complex forming ability of sweet potato starch were investigated after defatting and the addition of surfactants, such as SSL (sodium steamyl-2-lactylate) Dimodan (mono/di glyceride) and SE (sucrose ester) with different concentrations. All starch granules were smooth and round, there were no damages to starch granules after defatting and surfactant addition. amylose content of surfactant added stach decreased and me order of decrease was SSL, SE and Dimodan. The cornplex forming ability of SE added starch increased according to increasing HLB value. As surfactants concentration increased, amylose complex formig ability increased. In case of gelatinization patterns by amylograph, the initial pasting temperature of surfactant added starches was higher than mat of untreated or defatted starches, but viscosity at each temperature were all decreased. Soluble carbohydrate and leached amylose of starches increased at increasing temperature, those of surfactant added starches decreased at each temperature in the order of SSL, SE and Dimodan.

  • PDF

양이온성 계면활성제 거품 지속성 증진방법 연구 (Enhancement in Stability of Foam Generated with Cationic Surfactant Solutions)

  • 김홍열;정승우
    • 대한환경공학회지
    • /
    • 제34권11호
    • /
    • pp.735-742
    • /
    • 2012
  • 계면활성제 거품(foam)을 아예 형성하지 못하거나 foam 지속도가 매우 낮은 양이온성 계면활성제의 foam 지속성을 높이는 방법에 대해 연구하였다. 음이온성 계면활성제를 보조제로 첨가하는 방법, 콜로이드를 혼합하는 방법, 수용성 수지인 폴리비닐알콜을 첨가하는 방법 등 다양한 시도를 평가하였다. 각 5% 양이온성 계면활성제 용액의 foam 지속도를 평가한 결과, Cationic starch (CA-ST)는 foam이 전혀 발생되지 않았지만, Methyl triethanol ammonium methyl sulfate distearyl ester (CEQ90)의 foam 지속시간은 평균 46초, Cetyl trimethyl ammonium chloride (CM29)는 평균 31초로서 매우 낮았다. 음이온성 계면활성제 Sodium dodecyl sulfate (SDS) 첨가는 양이온성 계면활성제의 종류에 따라 지속도가 매우 다르게 나타났다. Cationic starch (CA-ST)의 foam 지속도는 매우 크게 증가된 반면 CEQ90와 CM29는 오히려 감소되었다. 콜로이드($SiO_2$, kaolin) 혼합이 양이온성 계면활성제 foam 지속도에 미치는 영향을 평가한 결과, CA-ST는 콜로이드 혼합시 foam이 전혀 발생되지 않았고, CEQ90과 CM29는 콜로이드를 주입하였을 경우 주입을 하지 않았을 때보다 지속도가 높아졌다. 수용성수지인 polyvinyl alcohol (PVA)첨가가 양이온성 계면활성제 foam 지속도에 미치는 영향을 평가한 결과, CA-ST는 PVA혼합에서도 foam이 전혀 발생 되지 않았지만, CEQ90과 CM29는 PVA의 농도가 높을수록 foam 지속도가 증가하였다. 양이온성 계면활성제에 음이온성 계면활성제 SDS와 콜로이드를 동시에 첨가한 결과 콜로이드보다 음이온성 계면활성제에 의해 양이온성 계면활성제 foam 지속도가 결정되었다. 음이온성 계면활성제 SDS와 PVA를 동시에 첨가하여 평가한 결과 PVA보다 역시 음이온성 계면활성제에 의해 양이온성 계면활성제의 foam 지속도가 결정되었다. Foam을 전혀 형성하지 못했던 양이온성 계면활성제인 CA-ST는 음이온성 계면활성제 SDS 0.14%, PVA 2.5% 첨가 조건에서 foam 지속시간이 평균 8,780초로 획기적으로 증가하였고 타 양이온성 계면활성제 CEQ90 보다 약 8배 이상의 지속시간을 보여주었다. 본 연구결과 foam이 형성되지 않거나 지속시간이 매우 짧은 양이온성 계면활성제는 음이온성 계면활성제를 첨가할 경우 foam형성에 도움을 받을 수 있고 colloid 및 PVA 등의 보조를 통해 양이온성 계면활성제의 지속도를 혁신적으로 증가시킬 수 있는 것으로 확인되었다. 그리고 양이온 계면활성제의 foam 지속도는 음이온성 계면활성제의 첨가농도에 의해 가장 큰 영향을 받는 것으로 보인다.

Precipitation, Resolubilization and Luminescent Properties of Tris (2,2$^\prime$-diimine)Ruthenium(II) Complexes in Premicellar Anionic Surfactant Solutions

  • Park, Joon-Woo;Kim, Sung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권5호
    • /
    • pp.317-322
    • /
    • 1988
  • Premicellar precipitation, resolubilization and luminescing behaviors of $RuL_3^{2+}$ (L = bpy, phen, $Me_2bpy$) in aqueous alkylsulfate and sulfonate solutions were studied. Addition of the anionic surfactants to $RuL_3\;^{2+}$ solutions caused initial precipitation which was redissolved by further addition of the surfactants. The apparent solubility products $K_{sp}$'s of the precipitates were evaluated assuming 1:2 salt formation. The values were smaller as the ligand is more hydrophobic and the length of hydrocarbon chain of the surfactant is longer. The $K_{sp}$ values for L = bpy were constant over wide surfactant concentration range. However, those for L = $Me_2bpy$ and also for phen, but to less extent, increased with the surfactant concentration. The resolubilization of 1:2 salts was followed by red-shift of emission band and extensive emission quenching above critical concentration of the surfactants. The critical concentration was lower for more hydrophobic surfactant. For L = $Me_2bpy$, the blue-shifted emission band with enhanced emission intensity was observed in intermediate surfactant concentration region. The high ionic strength of media prevented the precipitate formation, but facilitated the red-shift of the emission bands. The results support that the precipitate is dissolved by accretion of surfactant anions to the salts to form water-soluble surfactant-rich $RuL_3$-surfactant anionic species. These species appeared to aggregate cooperatively to produce large clusters which exhibited the red-shifted emission.

분산제가 BaTiO3/에폭시 복합체의 유전특성에 미치는 영향 (Effect of Surfactant Addition on the Dielectric Properties of BaTiO3/epoxy Composites)

  • 이동호;김병국;제해준
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.576-580
    • /
    • 2009
  • $BaTiO_3$/epoxy composites have been widely investigated as promising materials for embedded capacitors in printed circuit boards. It is generally known that the dielectric constant (K) of the $BaTiO_3$/epoxy composites increases with improvement of the dispersion of $BaTiO_3$ particles in the epoxy matrix that comes from adding surfactant. The influences of surfactant addition on the dielectric properties of the $BaTiO_3$/epoxy composites are reported in the present study. The dielectric constant of the $BaTiO_3$/epoxy composites is not significantly affected by the surfactant addition. However, the temperature coefficient of capacitance increases and the peel strength decreases as the amount of added surfactant increases. The influences of surfactant addition on the dielectric properties of the neat epoxy are also very similar to those of the $BaTiO_3$/epoxy composites. The residual surfactant in the $BaTiO_3$/epoxy composites affects the temperature coefficient of capacitance and the peel strength of the epoxy matrix, which in turn affects the temperature coefficient of capacitance and the peel strength of the $BaTiO_3$/epoxy composites.

THE STUDY ON STABLE EMULSION SYSTEM AND SELECTIVE ADDITION OF ACTIVE INGREDIENT IN W/O/W ONE STEP MULTIPLE EMULSION

  • Kim, Se-gie;Park, Hee-nam;Kim, Tae-kyoo
    • 대한화장품학회지
    • /
    • 제24권3호
    • /
    • pp.96-104
    • /
    • 1998
  • It was possible to produce W/O/W one step multiple emulsion on the system which satisfied following conditions. 1. 1-5% of hydrophilic liquid surfactant over HLB20 and lipophilic liquid surfactant which has HLB 3∼5 2. Non wax copolymers as oil thickener 3. More than 0.5% of carbomer as aqueous thickener 4. The manufacturing process which neutralize the dispersed carbomer (2.0% in water), after emulsifying. For the selective addition into inner and outer aqueous phase, we melted the glucose in water before emulsifying. Using an Anthrone analysis method, we analyzed the encapsulation yield of glucose in inner water phase. It was possible to raise the water encapsulation yield of the multiple emulsion through the following conditions. 1. Using of anionic hydrophilic surfactant(HLB 40) and lipophilic surfactant (HLB 3∼5) 2. Controlling the ratio of hydrophilic surfactant and lipophilic surfactant 3. Strengthening interface with increase of non wax oil thickener. When the separated adding process of glucose was adopted, approximately 85% of glucose was added selectively within inner aqueous phase.

  • PDF

폴리올 농도를 변화시킨 계면활성제 혼합물의 유변학적 거동 (Rheological Behaviour of Surfactant Mixtures by Varying the Concentration of Polyols)

  • 조완구;김기선
    • 한국응용과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.422-427
    • /
    • 2009
  • We have investigated the effects of polyols and NaCl on the rheological behaviours of surfactant mixtures. Sodium lauryl ether sulfate (SLES), cocamidopropyl betaine (CAPB), disodium cocoamphodiacetate (DSCA), cocamide DEA (CDEA) and lauroyl/myristoyl DEA (LMDE) were used as surfactants. The polyols added into the surfactant mixture were 1,3-butylene glycol, propylene glycol, glycerin, sorbitol, dipropylene glycol, PEG 1500 and PEG 400. The addition of amphoteric surfactant to SLES aqueous solution lead to increase the height of foam and the viscosity of the system. The addition of nonionic surfactant, LMDE or CDEA to the SLES aqueous solution increased the viscosity and the effect of LMDE was better than that of CDEA. The effect of adding polyols and NaCl into the surfactant mixture aqueous solution lead to increase or decrease the viscosity of the systems depending on the concentration of NaCl and the kinds of polyols. These results can be explained through the salting in or salting out of surfactant of the systems.

Carrageenan as a Rheology Agent for Mild Cleansing Applications.

  • Lynch, Gerard
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.369-369
    • /
    • 2003
  • Viscarin is a tradename given to viscosifying carrageenans manufactured by FMC BioPolymer. The suitability of Vis car ins as rheology agents in mild cleansing applications has been investigated. Rheological properties, foam volume and clarity were measured to determine the impact of including 1 % Viscarin on 10% solutions of the following surfactants: acylglutamate, cocoamidopropyl betaine, PEG-80 laurate, sodium lauryl sulphate and sodium lauryol sarcosinate. Viscosity, pseudoplasticity and thixotropy of Viscarin/surfactant solutions varied with surfactant type. In all cases, the addition of Viscarin substantially increased viscosity. For example, at a shear rate of 1 sol, all surfactant solutions had viscosities <0.1 Pa s while viscosities of Viscarin/surfactant solutions ranged from 10 to 60 Pa s. By comparison, a solution of 1 % Viscarin had a viscosity of 0.3 Pa s. Clarity of surfactant solutions decreased in all cases on the addition of Viscarin. However, it was found that by including a mild solubilizing surfactant, such as PEG 40 hydrogenated castor oil, crystal clarity could be maintained in Viscarin/surfactant solutions. Viscarin increased the foam volume of sodium lauryolsarcosinate solutions from 10 ml to 220 ml and had no impact on the foam volume of the other surfactants tested. These results were used to formulate a clear, ultra-mild foaming cleansing gel based on sodium lauryol sarcosinate and Viscarin without the need for a secondary, foam-boasting surfactant. A mild shampoo was also formulated. Both products have excellent skin-feel and are capable of suspending bubbles and solid inclusions.

  • PDF